
of microscopic reversibility, the initial labeling must be as shown (H_{S} from solvent). Then exchange of H_{Z} is retarded by the necessity for rotation out of the intramolecular hydrogen bond. That hydrogen bond would appear to be quite strong, imposing a significant barrier to rotation about the $\mathrm{C}-\mathrm{N}^{+}$bond. Nevertheless there seems to be hardly any barrier to rotation.

Comparison of Acid- and Base-Catalyzed Exchange. Why does internal hydrogen bonding retard base-catalyzed exchange of H_{Z} ca. 30 -fold but acid-catalyzed exchange hardly at all? Indeed, the ratio $k_{E S} / k_{Z S}$ for acid-catalyzed exchange is comparable to that found for ordinary primary amides, ${ }^{14}$ so that the hydrogen bonding in 6 does not retard exchange of H_{Z}. This result is consistent with observations on rotation of ammonium ion within its solvation shell. ${ }^{15}$ This rotation is extremely fast, especially in water, despite the necessity for breaking and remaking hydrogen bonds. Nevertheless, it is remarkable that the internal hydrogen bond in $\mathbf{1}$ is so much more resistant to breaking than that in 6 .

This comparison clarifies an aspect of NH exchange in proteins. Acid-catalyzed exchange had long been thought to occur by the N -protonation mechanism. However, substituent effects in model N -methyl amides ${ }^{16}$ and considerations of solvent accessibility to nitrogen and oxygen ${ }^{17}$ indicate that the imidic acid mechanism

[^0]is dominant. However, many of these NH are in α-helices, β sheets, or other environments where the nitrogen is accessible from only one face. Protonation on that face produces an intermediate 7 that can lose only H_{5}, the proton that came from solvent. Loss

of the original NH proton is impossible, since H_{E} is now embedded in the protein and inaccessible to solvent. In a primary amide, even 1 , the corresponding intermediate 6 can undergo rotation about the $\mathrm{C}-\mathrm{N}$ single bond and render any NH proton accessible to solvent. However, in a protein the backbone resists such twisting, and 7 cannot lead to proton exchange. In contrast, both the base-catalyzed and imidic acid mechanisms permit removal of the proton without this complication. Thus the N -protonation mechanism is quite unlikely for acid-catalyzed exchange of secondary NH in proteins.

Conclusions. The internal hydrogen bond in diamide 1 retards base-catalyzed exchange of H_{2} ca. 30 -fold. Exchange is viewed as occurring by direct abstraction of the proton from the hydrogen bond, and this may be the first example in which this one-step mechanism predominates. In contrast, the internal hydrogen bond retards the acid-catalyzed exchange of H_{z} not at all. This is a consequence of the nearly free rotation about the $\mathrm{C}-\mathrm{N}$ single bond of the N -protonated intermediate. However, this mechanism cannot be operative in proteins.
Acknowledgment. This research was supported by NSF Grant No. CHE87-14451.
(17) Tüchsen, E.; Woodward, C. J. Mol. Biol. 1985, 185, 421.

Synthesis of Covalently Linked Double-Helical Cross Sections Representative of Purine-Pyrimidine, Purine-Purine, and Pyrimidine-Pyrimidine Duplexes ${ }^{\dagger}$

Balekudru Devadas and Nelson J. Leonard ${ }^{*, \ddagger}$
Contribution from the Roger Adams Laboratory, School of Chemical Sciences, University of Illinois, 1209 West California Street, Urbana, Illinois 61801-3731. Received October 16, 1989

Abstract

Here described are the syntheses of (1) covalently linked cross sections with molecular architecture similar to Watson-Crick hydrogen-bonded purine-pyrimidine base pairs in RNA, DNA, and RNA/DNA double helices; (2) covalently linked purine-purine cross sections with dimensions such as would be produced in the pairing of A with I or G, generating a bulge in double-helical RNA or DNA; and (3) covalently linked pyrimidine-pyrimidine cross sections with dimensions such as might be produced in the hypothetical pairing of C with U or T, namely, a pinched-in RNA or DNA cross section.

In two preliminary communications, ${ }^{1.2}$ we have introduced the concept of covalently linked double-helical cross sections that are representative of purine-pyrimidine, purine-purine, and pyri-midine-pyrimidine duplexes. We described briefly how these

[^1]complex molecules in the bis(ribonucleoside) and bis(deoxyribonucleoside) series can be synthesized conveniently from the natural ribo- and deoxyribonucleosides in only three steps plus initial O -protection and final O -deprotection. We now provide further rationale and full details of the synthesis and spectroscopic
(1) Devadas, B.; Leonard, N. J. J. Am. Chem. Soc. 1986, 108, 5012.
(2) Leonard, N. J.; Devadas, B. J. Am. Chem. Soc. 1987, 109, 623.

Figure 1. Comparison of the geometry of (a) a Watson-Crick A.U (A.T) base pair with (b) a double-helical cross section containing a $1,3,4,6$ tetraazapentalene linking system.
properties of the target molecules.
The classical Watson-Crick double-helical model of DNA/ RNA possesses well-defined hydrogen bonds that hold the two strands in complementarity (Figure la). ${ }^{3}$ Our idea was to substitute for the central eight-membered ring containing the hydrogen bonds a coplanar array of two unsaturated five-membered rings (Figure lb). The terminal purine and pyrimidine rings would be held thereby in correct register by the central $1,3,4,6$ tetraazapentalene linking system, the geometry of which mimics closely that of the natural hydrogen-bonding system. Moreover, the terminal rings (Figure lb) could not be pulled apart easily in biological systems unless unforeseen enzymes exist that can act upon the five-ring N -heterocyclic system.

The close similarity of the overall molecular geometry is indicated by the respective interatomic distances in Figure la and b, which differ only by $\sim 0.2 \AA$. The same small difference would hold for the interatomic distances between the purine Cl^{\prime} and the pyrimidine Cl^{\prime} in the two representations. The dimensions shown in Figure 1 b have not yet been determined but have been calculated from a composite structure consisting of two separate entitites in the formula, i.e., $1, N^{6}$-ethenoadenosine and $3, N^{4}$-ethenocytidine, the dimensions of which have been determined by single-crystal X-ray structure analysis. ${ }^{4}$ In the simple tetracyclic molecule analogous to that in Figure 1 b , namely, dipyrido $\left[1,2-a: 2^{\prime}, 1^{\prime}-f\right]-$ 1,3,4,6-tetraazapentalene, ${ }^{5}$ the corresponding $\mathrm{N}-\mathrm{N}$ distances, top and bottom, have been determined by X -ray analysis to be 2.54 and $2.59 \AA$, respectively. ${ }^{6}$

It might be argued that although the dimensions for the central eight-membered ring in Figure la and the central two fivemembered rings in Figure 1 l are in close conformity, the N for O substitution in the latter detracts from the excellence of the analogy. To the contrary, both N and O present an electron pair in the base-pair plane in the major groove (when 1, 2, or $\mathbf{3}$ is in a polynucleotide structure). A trivalent nitrogen rather than a divalent oxygen is necessary for the five-membered ring construction. It is a moot point at this time whether the central ring system in Figure 1 b is unprotonated or protonated in aqueous solution (cf. Figure la). In any event, the close resemblance of the two entities in Figure 1 suggests that it may be possible to incorporate the covalent cross section into polynucleotides or

[^2]

Figure 2. Covalently linked purine-purine $(15,16)$ and pyrimidine-pyrimidine (17,18) double-helical cross sections containing a central 1,3,4,6-tetraazapentalene.
polydeoxynucleotides and thus provide constructs that would resist separation, i.e., prevent replication at the DNA level within a cell. Thus, the synthesis of covalently linked base pairs offered not only a challenge but a worthwhile goal because of potential biological applications.

The concept described above can also be applied to covalently linked cross sections that are distorted in their overall dimensions from those of the Watson-Crick hydrogen-bonded base pairs in a double helix. Great interest in the effect of DNA distortion on binding and biological activity has stimulated us to provide, for example, a covalently linked purine-purine cross section (Figure 2, 15 and 16) with dimensions such as would be produced in the pairing of A with I or G, capable of generating a bulge when incorporated in a double-helical DNA or RNA. We also provide a covalently linked cross section with dimensions such as might be produced in the hypothetical pairing of C with T or U , namely, a pinched-in DNA or RNA cross section (Figure 2, 17 and 18). There is the potential in these molecules, when phosphorylated and incorporated in a double-helical polynucleotide sequence, of showing just what the biological effects would be of a bulge or a narrowing of the helix under different circumstances. This manuscript describes the details of the methodology that culminated in the synthesis of the target molecules, from which point the biological investigations can now proceed.

The following strategic requirements were set for the synthesis of a covalently linked bis(deoxyribosyl) or bis(ribosyl) cross section. (A) The starting materials should be readily available and related to the normal base-pairing entities of DNA or RNA. (B) The deoxyribosyl and ribosyl groups should already be attached and in the correct stereochemistry in the starting materials. Any attempt at later attachment to the unsubstituted N -heterocyclic ring system would be complicated by isomer separation and requisite structure elucidation. (C) A nucleoside annelating agent should be used that closes onto one of the rings, adenine or cytosine, preferentially so that only one step remains necessary to close the second five-membered ring pictured in Scheme I. (D) An efficient oxidizing agent must be found for the second ring closure. We have chosen the di- O-acetyl derivatives of deoxyadenosine and deoxycytidine and the tri- O-acetyl derivatives of adenosine and cytidine as convenient starting materials and chloroketene diethyl acetal ${ }^{7}$ as the nucleoside annelating agent.

The heating of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O -acetyladenosine (4 a$)^{8}$ with chloroketene diethyl acetal (5) in ethyl acetate in the presence of p-toluenesulfonic acid afforded the chloroimidate 8 a in quantitative yield ${ }^{9-11}$ via the adduct 6 (Scheme I). The subsequent con-

[^3]Scheme I

densation of 8 a with 1 equiv of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetylcytidine (9 a$)^{12}$ in benzene/acetonitrile with p-toluenesulfonic acid under reflux yielded (27%) the bis(riboside) derivative $11 a^{1,11}$ via the putative intermediate 10a. The low yield in this step was the result, in part, of the reversion of 8 a to 4 a and the cyclization of 8 a to $\mathbf{6 a}$. 1,9 The direction of closure of the new five-membered ring was established by ${ }^{1} \mathrm{H}$ NMR guidelines. ${ }^{9}$ Whereas annelation of the five-membered ring onto a cytidine unit decreases the chemical shift difference between the pyrimidine ring protons, annelation onto an adenosine unit causes a marked downfield shift of the original purine 2 -proton. It was evident from the downfield shift of the original 2 -proton of the adenosine moiety (8a) after reaction with $9 \mathbf{a}$ that ring closure had occurred on the adenosine side of 10a and that the structure of the product could be represented as 11a. The proton NMR spectrum (Figure 3a) displayed five aromatic signals plus those due to two tri- O -acetylribofuranosyl moieties. The FAB mass spectrum of 11a exhibited a pseudo molecular ion $(\mathrm{M}+\mathrm{H})^{+}$peak at $\mathrm{m} / \mathrm{z} 785$ and two fragment ion peaks at $\mathrm{m} / \mathrm{z} 527$ and 269 due to the loss of one and two sugar units, respectively. The ${ }^{13} \mathrm{C}$ NMR spectrum and the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ short-range correlation studies gave further confirmation of the assigned structure.

The corresponding bis(deoxyribonucleoside) derivative 11b was synthesized in a similar manner from $3^{\prime}, 5^{\prime}$-di- O-a cetyl- 2^{\prime}-deoxyadenosine (4b) ${ }^{13 \mathrm{a}}$ and $3^{\prime}, 5^{\prime}$-di- O -acetyl- 2^{\prime}-deoxycytidine (9b) ${ }^{13 \mathrm{~b}}$

[^4]and was characterized by similar spectroscopic means. The compound of hybrid type (11c) was synthesized from $\mathbf{4 b}$ and $9 \mathbf{a}$.

The problem of cyclization of compounds 11a-c to $14 a-c$ is essentially one of forming a bond between two electron-rich centers, namely, the pyrimidine ring nitrogen and the carbon on the etheno bridge, which is actually the β-carbon of an enamine system. This necessitates a reversal of polarization at one center. Reaction conditions were first developed with a model compound. It was discovered that the oxidative cyclization of 2-(2-pyridylamino) imidazo[1,2-a]pyridine to dipyrido $\left[1,2-a: 2^{\prime}, 1\right.$ ' $\left.-f\right]-1,3,4,6-$ tetraazapentalene could be effected ${ }^{5,6}$ by means of iodobenzene diacetate [(diacetoxyiodo)benzene, iodosobenzene diacetate] ${ }^{14}$ in 2,2,2-trifluoroethanol. However, these conditions failed to bring about the cyclization of 11a to 14a, due partially to the poor nucleophilicity of the endocyclic nitrogen of the cytidine moiety. The only product isolated was an adduct of trifluoroethanol with the reactive intermediate (e.g., 13a). ${ }^{15}$ Thus, we considered it necessary to use a stronger, complexing oxidant with a bulkier fluorinated alcohol as one component of a high-dielectric, nonnucleophilic solvent. Oxidative cyclization of 11a to 14 a was effected by means of 2 -nitroiodobenzene diacetate ${ }^{16}$ in a solvent consisting of $1,1,1,3,3,3$-hexafluoro-2-propanol or 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol and nitromethane ($1: 2 \mathrm{v} / \mathrm{v}$) at

[^5]Scheme II

$-10^{\circ} \mathrm{C}$. The oxidative cyclization did not proceed in either solvent alone. Under the improved reaction conditions, the highly fluorescent product $14 a$ was obtained in 36% yield. Compounds 14b and 14c were obtained by this methodology in yields of 40 and 26%, respectively. It is pertinent to note that the oxidative ring closure of 11a did not proceed in the presence of $\operatorname{tris}(p$ bromophenyl)aminium hexachloro stibnate, which is a potent one-electron acceptor. ${ }^{17.18}$ This observation, together with the experience gathered in the iodobenzene diacetate oxidation of model compounds, ${ }^{5,19}$ favors an ionic pathway (i.e., via 13) for the ring closure.

The structure elucidation of $14 \mathrm{a}-\mathrm{c}$ was achieved by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ short-range ${ }^{20}$ and long-range ${ }^{21,22}$ correlation studies, and FAB mass spectrometry. The proton NMR spectrum of 14 a revealed the presence of two tri- O acetylribosyl moieties and four protons attached to unsaturated carbon atoms (Figure 3b) of the aglycon portion. The 5 -proton in the bay region displayed a marked downfield chemical shift of $\sim 1 \mathrm{ppm}$ when it was compared with the corresponding proton in the precursor 11a. This feature, which is due to the anisotropy of the proximal carbonyl group, is at the same time a confirmation of the direction of ring closure. The chemical shift difference between the 10 - and 11 -protons was diminished appreciably (~ 0.5 ppm) upon oxidative cyclization. This change is indicative of the occurrence of the second etheno annelation on the cytidine moiety. ${ }^{9}$ Compounds $\mathbf{1 4 b}$ and \mathbf{c} exhibited similar proton NMR patterns. The ${ }^{13} \mathrm{C}$ NMR spectra of $14 \mathrm{a}-\mathrm{c}$ displayed seven quaternary carbon and four unsaturated $\mathrm{C}(\mathrm{H})$ resonances for the aglycon portion. The unambiguous assignments of the ${ }^{13} \mathrm{C}$ NMR signals were facilitated by the analysis of the proton-coupled ${ }^{13} \mathrm{C}$ NMR spectra and long-range ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ heteronuclear correlations, as shown for 14c (Experimental Section, Figures 4 and 5). The complete assignment of carbon and proton resonances for $\mathbf{1 4 c}$, as given in Figure 6a is representative for compounds 14a-c.

The FAB mass spectra of $14 \mathrm{a}-\mathrm{c}$ displayed characteristic fragmentation patterns similar to those exhibited by their respective precursors 11a-c, that is, intense pseudo molecular ion peaks, $(\mathrm{M}+\mathrm{H})^{+}$, at $m / z 783,643$, and 725 , respectively. The elemental compositions of $14 a-\mathrm{c}$ were confirmed by high-resolution FAB mass spectrometry.

The final phase in the synthesis of compounds 1, 2, and $\mathbf{3}$ required treatment with methanolic ammonia at $0^{\circ} \mathrm{C}$ for a period of 3-4 h followed by careful reaction workup. It was observed

[^6]that complete deacetylation could also be effected by treatment with tert-butylamine ${ }^{23}$ (0.15 M) in methanol, which furnished cleaner products than the $\mathrm{NH}_{3} / \mathrm{MeOH}$ conditions. The products were purified by recrystallization from either water or aqueous methanol, and their structures, indicated by their respective precursors, were confirmed by their proton NMR spectra and by low- and high-resolution FAB mass spectrometry. The overall accomplishment is the short synthesis of three representative compounds having a high degree of complexity: five N -heteroaromatic rings containing a total of eight nitrogens; ribofuranosyl or deoxyribofuranosyl groups on the appropriate nitrogens for cross-sectional analogy (RNA, DNA, and DNA/RNA); and, pro forma, eight, six, or seven asymmetric carbons.

If, indeed, the actual $\mathrm{N}-\mathrm{N}$ distances in the dual five-membered ring system common to $\mathbf{1 - 3}$ are close to those shown in Figure 1 and found in the model dipyrido-1,3,5,6-tetraazapentalene ${ }^{6}$ and the pentacyclic ring system is flat, these compounds represent an accurate dimensional mimic ($\mathrm{ca} . \pm 0.2 \mathrm{ppm}$) of a natural basepaired cross section. Distortion to a wider $(15,16)$ or narrower $(17,18)$ covalent cross section has been achieved by synthesis of the compounds shown in Figure 2. ${ }^{2}$ The methodology used for 1-3 was found to be applicable to the preparation of the covalently linked purine-purine bis(nucleosides) 15 and 16 (Scheme II). The synthesis of 15 began with the formation of the chloroimidate $\mathbf{8 a}$, followed by reaction with 1 equiv of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyladenosine (4a) in a solvent consisting of benzene/dichloromethane/acetonitrile ($3: 2: 1, \mathrm{v} / \mathrm{v}$) in the presence of 0.5 equiv of p-toluenesulfonic acid at $60^{\circ} \mathrm{C}$. By repeated flash chromatographic separations, the fluorescent bis(ribonucleoside) derivative 19a was isolated and most of the unreacted $\mathbf{4 a}$ was recovered. The structure of 19a, as in cases of the compounds described above and to follow, was established by ${ }^{1} \mathrm{H}$ NMR spectroscopy, ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ short-range and long-range heteronuclear correlation studies, and FAB mass spectrometry. The oxidative cyclization of 19a to the fluorescent product 20a was effected in a solvent mixture of $1,1,1,3,3,3-$ hexafluoro-2-propanol or 1,1,1,3,3,3-hexafluoro-2-methyl-2propanol and nitromethane at $-10^{\circ} \mathrm{C}$. The presence of a plane of symmetry within the hexacyclic nitrogen ring system in the oxidation product was evident from the dramatic simplification of its ${ }^{1} \mathrm{H}$ NMR spectrum in comparison with that of its immediate precursor 19a. Particularly diagnostic is the significant downfield shift of the NMR signal for the proton on the pyrimidine portion of the purine ring system observed in the first cyclization, 8a to 19a (0.46 ppm), and again in the second cyclization, 19a to 20a (0.61 ppm). The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0 a}$ was also indicative of the symmetry achieved. The chemical shifts of the different junctional carbons 6a and 13a appeared at 111.41 and 152.51 ppm , respectively, and that of the identical junctional carbons 12 b and 14a appeared at 141.45 ppm . The bis(deoxyribonucleoside) derivative 20b was synthesized by a similar experimental protocol
(23) Dorman, M. A.; Noble, S. A.; McBride, L. J.: Caruthers, M. H. Tetrahedron 1984, 40.95.

that started with $3^{\prime}, 5^{\prime}$-di- O-acetyl- 2^{\prime}-deoxyadenosine (4 b).

An improvement in the complete deacetylation of $20 a$ and b over that mentioned in the earlier communication, ${ }^{2}$ namely, treatment with methanolic ammonia, has been found in the use of tert-butylamine (0.15 M) in methanol at $0^{\circ} \mathrm{C}$ for 3 h followed by 1.5 h at room temperature. The products, 3,10 -di- β-d-ribofuranosylpurino $\left[1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[2,1-i]$ purine (15) and 3,10-bis(2^{\prime}-deoxy- β-D-ribofuranosyl)purino[$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[2,1-i]$ purine (16), exhibit blue fluorescence. They are covalently linked analogues of an A-I base-pair cross section (RNA, DNA) that is hydrogen bonded in an extended Watson-Crick manner. While there is some ambiguity about the interbase hydrogen bonding in helical poly(A) $\operatorname{poly}(\mathrm{I}){ }^{24-27}$ in the three-stranded helical complex poly(A) \cdot poly (I) \cdot poly(I), ${ }^{24,26-31}$ one set of base pairs is believed to be of an extended Watson-Crick type, N1 to N1 and N6 to O6, and the other, of the Hoogsteen variety, N7 to N1 and N6 to O6. ${ }^{32}$ The extended or "long" ${ }^{27}$ base pair I•A, by modeling, would have a longer $\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$ distance $(13.0 \AA$) than a standard Watson-Crick base pair $(10.67 \AA) .{ }^{27}$ The base pair I•A within ordered duplexes has been shown to be less stable than I. C^{33} and to be strongly affected by the neighboring bases in the sequence. ${ }^{33}$ Compounds 15 and 16 also serve as models for the corresponding G.A mismatch base pairs. X-ray structure determination shows that the two purine-purine mispairings at the center of the decamer duplex GCAAGATTGC are in the anti, anti conformation, ${ }^{34}$ in agreement with NMR evidence for the decamer in solution. ${ }^{35}$ The same geometry of the "long" base pair, which produces a bulge, was observed by NMR for mismatched G•A pairs in the dodecamer duplex CGAGAATTCGCG ${ }^{36}$ and by X-ray in the anticodon stem of TRNA. ${ }^{37,38}$

The versatility of the methodology was demonstrated also in the synthesis (Scheme II) of a covalently linked double-helical cross section $(17,18)$ representative of a pyrimidine-pyrimidine duplex, which is unlike any structural feature presently observed in Nature. The synthesis of 2,9-di- β-D-ribofuranosylpyrimido$\left[1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[1,2-c]$ pyrimidine-1, 10 -dione (17) started with $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri-O-acetylcytidine (9a) and that of 2,9-bis (2^{\prime}-deoxy- β-D-ribofura nosyl)pyrimido [$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[1,2-c]$ pyrimidine- 1,10 -dione (18) started with $3^{\prime}, 5^{\prime}$-di- O -acetyl-2'-deoxycytidine (9 b) and proceeded (through 21a,b $\rightarrow 22 a, b \rightarrow 23 a, b \rightarrow 17,18$) as in the earlier examples. The course of the crucial oxidation step, 22a,b $\rightarrow 23 \mathrm{a}, \mathrm{b}$, was obvious from the resulting simplification of the proton NMR spectra due to the presence of a plane of symmetry in the N heterocyclic portion of 23. The structural change was substantiated by the ${ }^{13} \mathrm{C}$ NMR spectrum of 23a, for example, in which the junctional carbons 5 a and 11 a appeared at 153.52 and 116.51 ppm, respectively, and the now identical carbons 4 a and 6 a appeared at 147.31 ppm (Experimental Section, Figure 6b). Here, as in the other cases involving final deacetylation, methanolic

[^7]Table I. Fluorescence Emission Maxima of Precursors and Final Products

$\overline{\lambda_{\max }^{\mathrm{em} a}}$			$\lambda_{\max }^{\mathrm{em} a}$			$\lambda_{\text {max }}^{\text {ema }}$		
1	422	$0.14{ }^{\text {c }}$	14b	420	$0.18{ }^{\text {c }}$	19a	418	$0.06{ }^{\text {c }}$
2	420	$0.12{ }^{\text {c }}$	14c	418	0.14^{c}	19b	418	$0.05^{\text {c }}$
3	423	$0.14^{\text {c }}$	15	424	$0.08{ }^{\text {c }}$	20a	423	$0.15{ }^{\text {c }}$
11a	421	$0.001{ }^{\text {d }}$	16	427	0.11^{c}	20b	424	$0.15{ }^{\text {c }}$
11b	419	$0.002^{\text {d }}$	17	386	$0.16^{\text {c }}$	23a	390	$0.17^{\text {c }}$
14a	418	$0.14{ }^{\text {c }}$	18	390	0.15^{c}	23b	392	$0.15^{\text {c }}$

${ }^{a}$ Excitation at 325 nm in absolute ethanol. ${ }^{b}$ Quantum yield calculated relative to coumarin in absolute ethanol, $\Phi=0.56$ at 325 nm . ${ }^{c} \pm 0.02{ }^{d} \pm 0.001$ (standard deviations).
tert-butylamine $(0.15 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ for 3 h was found to be effective and is the method of choice. Full details of the reaction conditions and the yields are given in the Experimental Section. Both 17 and 18 exhibit blue fluorescence.

Compounds 17 and 18 mimic a hypothetical $\mathrm{C}-\mathrm{U}$ or $\mathrm{dC}-\mathrm{dU}$ "short" base pair in which the carbonyls are constrained to proximity. This is unlike the structural feature observed in natural RNA (U-U in the R17 virus ${ }^{39,40}$) or in a synthetic oligomer [C's between runs of $\operatorname{poly}(\mathrm{A})$ and $\left.\operatorname{poly}(\mathrm{U})^{41}\right]$, where the pyrimidinepyrimidine bases are turned outward. ${ }^{42}$ In a thorough study of mismatches by the thermodynamics of double-helix formation, pyrimidine-pyrimidine oppositions such as T. C^{43} were found to be strongly destabilizing. ${ }^{44}$ Compounds 17 and 18 do offer the advantage over intercalating models ${ }^{45}$ of providing a fixed cross section with an established (derived) ${ }^{46,47}$ short distance, $8.2 \AA$, between Cl^{\prime} and Cl^{\prime} of the sugar moieties. They are spatially similar to intermolecular $\mathrm{T}_{\text {keto }} \cdot \mathrm{T}_{\text {enol }}$ pairs $\left(\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}\right.$ distance, 8.6 \AA) observed in crystals of the hairpin hexadecamer CGCGCGTTTTCGCGCG. ${ }^{48}$

The fluorescence properties of compounds $\mathbf{1 - 3}, \mathbf{1 5}, 16$, and 17 , 18 (Table I) render them suitable covalent cross-sectional probes with $\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$ interatomic distances of a pproximately $10.4+, 13.0$, and $8.2 \AA$, respectively.

We have phosphorylated these compounds, and we are attempting to incorporate them in double-helical polynucleotide sequences by a combination of enzymatic and chemical methodology. Thus incorporated, they will present three dimensionally specific types of cross section: normal, that is, within $0.2-0.3 \AA$ of normal in width; wider, corresponding to a bulge; and narrower, corresponding to a pinching in of the double helix. Such distortions are of fundamental interest for determination of the influence of local structure on representative enzyme binding and biochemical and biophysical behavior.

Biological Studies. Compounds 1-3 and 15-18 when tested in vitro ${ }^{49}$ for antiviral (HSV-1), antiyeast (Saccharomyces cer-
(39) Tinoco, I., Jr.; Borer, P. N.; Dengler, B.; Levine, M. D.; Uhlenbeck, O. C.; Crothers, D. M.; Gralla, J. Nature (London) New Biol. 1973, 246, 40. (40) Borer, P. N.; Dengler, B.; Tinoco, I., Jr.; Uhlenbeck, O. C. J. Mol. Biol. 1974, 86, 843 .
(41) Uhlenbeck, O. C.; Martin, F. H.; Doty, P. J. Mol. Biol. 1971, 57, 217. $(\mathrm{Ap})_{n} \mathrm{UpC}(\mathrm{pU})_{n}$ was not examined.
(42) Pyrimidine bases are turned outward in single-helical cases. $\mathrm{d}(\mathrm{pTpT})$: Camerman, N.; Fawcett, J. K.; Camerman, A. J. Mol. Biol. 1976, 107, 601. poly(C): Zmudzka, B.; Janion, C.; Shugar, D. Biochem. Biophys. Res. Commun. 1969, 37, 895. Alderfer, J.; Tazawa, I.; Tazawa, S.; Ts'o, P. O. P. Biophys. J. 1975, 15, 29a. Broido, M. S.; Kearns, D. R. J. Am. Chem. Soc. 1982, 104, 5207.
(43) Keepers, J. W.; Schmidt, P.; James, T. L.; Kollman, P. A. Biopolymers 1984, 23, 2901.
(44) Aboul-ela, F.; Koh, D.; Tinoco, I., Jr.; Martin, F. H. Nucleic Acids Res. 1985, 13, 4811.
(45) (a) Viswamitra, M. A.; Pandit, J. J. Biomol. Struct. Dyn. 1983, I, 743. (b) Viswamitra, M. A.; Pandit, J. J. Curr, Sci. 1983, 52, 207. (c) Pandit, J.; Seshadri, J. P.; Viswamitra, M. A. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1983, C39, 342.
(46) Wang, A. H.-J.; Barrio, J. R.; Paul, I. C. J. Am. Chem. Soc. 1976, 98,7401. The $\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$ distance was calculated from the atomic coordinates for the "half" molecule, ϵ Cyd, by Dr. Scott R. Wilson.
(47) Jakōlski, M.; Krzyzosiak, W.; Sierzputowska-Gracz, H.; Wiewiörowski, M. Nucleic Acids Res. 1981, 9, 5423.
(48) Chattopadhyaya, R.; Ikuta, S.; Grzeskowiak, K.; Dickerson, R. E. Nature 1988, 334, 175.
evisiae), and antibacterial ${ }^{50}$ (Escherichia coli, Micrococcus luteus, and Bacillus subtilis) activity were found to be inactive. This was also the case when dimethyl sulfoxide was present in the medium and/or was used as a solvent for the application of the compound to the medium. Accordingly, it is somewhat uncertain as to whether these inseparable cross-sectional compounds can be transported into cells in a normal process. All seven compounds were also found to be noncytotoxic at $10 \mu \mathrm{~g} / 6.35 \mathrm{~mm}$ filter disk against the CV-I monkey kidney cell line. ${ }^{51}$ Furthermore, the biochemical induction assays ${ }^{52}$ of these compounds at $10 \mu \mathrm{~g} / \mathrm{mL}$ were found to be negative, ${ }^{53}$ which inferred that there was no damage of the permeabilized E. coli DNA.

Experimental Section

General Methods. Melting points were determined on a ThomasHoover capillary melting point apparatus and are uncorrected. Microanalyses were performed by Josef Nemeth and his staff at the University of Illinois. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and two-dimensional HETCOR spectra were recorded on a GE- 300 MHz FT NMR spectrometer in deuteriochloroform (unless otherwise mentioned) using tetramethylsilane as internal standard. All chemical shifts (δ) are reported in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$ and the J values are reported in hertz (Hz). Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; br, broad. Protons exchangeable with $\mathrm{D}_{2} \mathrm{O}$ are abbreviated as "ex".

Mass spectra were obtained by fast atom bombardment technique with a VG ZAB-1HF mass spectrometer. Ultraviolet (UV) absorption spectra were recorded on a Beckman Acta MVI spectrophotometer. FT-IR spectra were recorded on a Nicolet 289B instrument. Fluorescence spectra were measured on a Spex Fluorolog 111C spectrofluorometer coupled with a Datamate microprocessor.

Thin-layer chromatography (TLC) was performed on plastic sheets precoated with silica gel (Merck Kieselgel 60, F254) using chloroform/methanol ($9: 1, v / v$), A, or $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, v / v), \mathrm{B}$, as the solvent systems. After development, the compounds were visualized by UV light. Column chromatography separations were carried out on silica gel (Alfa silica gel, $58 \mu \mathrm{~m}$) under pressure (flash chromatography) (6 psi). All reactions were carried out under anhydrous conditions.

Crystals of 1-3 and 15-18 obtained thus far were unsatisfactory for X-ray analysis.

Materials. Ethyl acetate was distilled from phosphorous pentoxide and stored over molecular sieves ($4 \AA$). Acetonitrile was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ and freshly distilled from CaH_{2}. Benzene was purified by distillation from sodium and stored over molecular sieves ($4 \AA$). DMF was distilled under reduced pressure from CaH_{2} and stored over molecular sieves (3 \AA). p-Toluenesulfonic acid monohydrate was purchased from Aldrich Chemical Co. Hexafluoro-2-propanol (purchased from Aldrich) and hexafluoro-2-methyl-2-propanol (purchased from PCR Chemical) were distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Nitromethane was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Adenosine, 2^{\prime}-deoxyadenosine, cytidine, and 2^{\prime}-deoxycytidine were purchased from Sigma Chemical Co. tert-Butylamine (purchased from Aldrich) was purified by distillation over NaOH pellets. Methanolic ammonia was prepared by passing anhydrous ammonia for 20 min into cold $\left(0^{\circ} \mathrm{C}\right)$ anhydrous methanol.
$\boldsymbol{N}^{\mathbf{6}}$.(1,1-Diethoxy-2-chloroethyl)-2', $\mathbf{3}^{\prime}, 5^{\prime}$-tri- \boldsymbol{O}-acetyladenosine (7a). A mixture of tri- O acetyladenosine ($4 \mathrm{a} ; 80.39 \mathrm{~g}, 1 \mathrm{mmol}$), chloroketene diethyl acetal (5$)^{7,54}(0.6 \mathrm{~g}, 4 \mathrm{mmol})$, and p-toluenesulfonic acid monohydrate ($0.03 \mathrm{~g}, 0.16 \mathrm{mmol}$) in ethyl acetate (5 mL) was stirred for 16 h at room temperature under an atmosphere of nitrogen. During this period the conversion to the adduct 7a was found to be complete as revealed by TLC (system A) of the reaction mixture. The ethyl acetate was distilled (bath temperature $40-45^{\circ} \mathrm{C}$) under reduced pressure, and excess of 5 was removed by repeated distillation with DMF $(6 \times 5 \mathrm{~mL})$ under reduced pressure to give a pale yellow syrup. This was purified by silica gel (15 g) chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(3: 1, \mathrm{v} / \mathrm{v})$ to afford 7a as a colorless thick syrup ($0.5 \mathrm{~g}, 100 \%$): $R_{f} 0.52$ (system B); ${ }^{1} \mathrm{H}$ NMR $\delta 1.23\left(\mathrm{t}, 6, J=7.05 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.1,2.13$, and $2.15(3 \mathrm{~s}, 9$, $\left.\mathrm{COCH}_{3}\right), 3.64\left(2 \mathrm{q}, 4, \mathrm{OCH}_{2}\right), 4.39\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.36-4.5\left(\mathrm{~m}, 3,4^{\prime}-\mathrm{H}\right.$, $\left.5^{\prime}-\mathrm{H}\right), 5.69\left(\mathrm{t}, 1,3^{\prime}-\mathrm{H}, J_{2^{\prime} 3^{\prime}}=5.2 \mathrm{~Hz}, J_{3^{\prime} 4^{\prime}} 4.75 \mathrm{~Hz}\right), 5.96\left(\mathrm{t}, 1, J_{1^{\prime} 2^{\prime}}=\right.$ $\left.J_{2^{\prime} 3^{\prime}}=5.2 \mathrm{~Hz}\right), 6.18\left(\mathrm{~d}, 1^{\prime}, 1^{\prime}-\mathrm{H}, J=5.2 \mathrm{~Hz}\right) 6.23(\mathrm{~s}, 1, \mathrm{NH}, \mathrm{ex}), 7.95$

[^8](s, 1, 8-H), 8.47 (s, 1, $2-\mathrm{H}$); low-resolution FAB MS, m / z (relative intensity) 544 ($\mathrm{MH}^{+}, 29$), 498 (82), 394 amu (100); high-resolution FAB MS, $m / z 544.1815\left(\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{ClN}_{5} \mathrm{O}_{9}\right.$ requires 544.1812 amu$)$.
\boldsymbol{N}^{5} (1-Ethoxy-2-chloroethylidene)- $\mathbf{2}^{\prime}, 3^{\prime}, 5^{\prime}$-tri- \boldsymbol{O}-acetyladenosine (8a). ${ }^{9-11}$ A stirred mixture of tri- O acetyladenosine ($4 \mathrm{a} ; 0.2 \mathrm{~g}, 0.5 \mathrm{mmol}$), chloroketene diethyl acetal ($5 ; 0.3 \mathrm{~g}, 2 \mathrm{mmol}$), and p-toluenesulfonic acid $(0.075 \mathrm{~g}, 0.4 \mathrm{mmol})$ in ethyl acetate (8 mL) was heated at reflux ($80^{\circ} \mathrm{C}$) for 15 h under an atmosphere of nitrogen. The TLC of the reaction mixture (system A) indicated the formation of a major product that was less polar than the starting material. The solution was concentrated under reduced pressure, and excess of 5 was removed by codistillation with DMF ($3 \times 5 \mathrm{~mL}$) to give a viscous residue. The material was purified by silica gel (10 g) column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}$ OAc $(25-40 \%, v / v)$ gradient. Fractions containing $8 a$ were combined, concentrated under reduced pressure (rotary evaporator), and dried under high vacuum to give pure $8 \mathrm{a}(\mathbf{0 . 2 4} \mathrm{g}, 96 \%)$ as a colorless viscous oil; high-resolution FAB MS, $m / z 498.1403\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClN}_{5} \mathrm{O}_{8}\right.$ requires 498.1394 amu).
N^{6}-(1,1-Diethoxy-2-chloroethyl)-3', $\mathbf{5}^{\prime}$-di- O-acetyl- $\mathbf{2}^{\prime}$-deoxyadenosine (7b). A mixture of $3^{\prime}, 5^{\prime}$-di- O-acetyl-2'-deoxyadenosine ($4 \mathrm{~b} ;^{13 \mathrm{a}} 0.300 \mathrm{~g}$, 0.9 mmol), chloroketene diethyl acetal $(5 ; 0.6 \mathrm{~g}, 4 \mathrm{mmol})$, and p toluenesulfonic acid ($0.03 \mathrm{~g}, 0.16 \mathrm{mmol}$) in dry ethyl acetate $(10 \mathrm{~mL})$ was stirred at room temperature under an atmosphere of nitrogen. TLC of the reaction mixture (system B) after 16 h revealed quantitative conversion to a less polar product. Ethyl acetate was distilled under reduced pressure, and excess of 5 was removed by codistillation in the DMF ($3 \times 5 \mathrm{~mL}$) under reduced pressure to give a viscous residue. This was subjected to purification by silica gel (15 g) column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(3: 1, \mathrm{v} / \mathrm{v})$ as the eluent to give $7 \mathrm{~b}(0.39 \mathrm{~g}, 90 \%)$ as colorless amorphous solid: $R_{f} 0.4$ (system B); ${ }^{1} \mathrm{H}$ NMR $\delta 1.23$ (2 t , $\left.6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.1$ and $2.14\left(2 \mathrm{~s}, 6, \mathrm{COCH}_{3}\right), 2.63\left(\mathrm{~m}, 1,2^{\prime} \mathrm{a}-\mathrm{H}\right), 3.0(\mathrm{~m}$, $\left.1,2^{\prime} \mathrm{b}-\mathrm{H}\right), 3.64\left(\mathrm{~m}, 4, \mathrm{OCH}_{2}\right), 4.4\left(\mathrm{~m}, 5,4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 5.45(\mathrm{~m}$, 2, $\left.3^{\prime}-\mathrm{H}\right), 6.28(\mathrm{br} \mathrm{s}, 2, \mathrm{NH}$, ex $), 6.43\left(2 \mathrm{~d}, 1,1^{\prime}-\mathrm{H}, J=5.95 \mathrm{~Hz}\right), 7.98$ (s, $1,8-\mathrm{H}$), $8.47(\mathrm{~s}, 1,2-\mathrm{H})$; low-resolution FAB MS, m / z (relative intensity) $486\left(\mathrm{MH}^{+}, 45\right), 440(90), 336$ (100); high-resolution FAB MS, $m / z 486.1749\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ClN}_{5} \mathrm{O}_{7}\right.$ requires 486.1758 amu$)$,
\boldsymbol{N}^{6}-(1-Ethoxy-2-chloroethylidene)- $\mathbf{3}^{\prime}, \mathbf{5}^{\prime}$-di- \boldsymbol{O}-acetyl- $\mathbf{2}^{\prime}$-deoxyadenosine (8b). A stirred mixture of $3^{\prime}, 5^{\prime}$-di-O-acetyl-2'-deoxyadenosine (4b; 0.165 , 0.49 mmol), chloroketene diethyl acetal ($5 ; 0.3 \mathrm{~g}, 2 \mathrm{mmol}$), and p toluenesulfonic acid ($0.06 \mathrm{~g}, 0.3 \mathrm{mmol}$) in ethyl acetate (7 mL) was heated at $60^{\circ} \mathrm{C}$ for 16 h under an atmosphere of nitrogen. The completion of the reaction was confirmed by TLC analysis (system B). The reaction mixture was concentrated under reduced pressure, and excess of 5 was removed by repeated distillation with DMF ($3 \times 5 \mathrm{~mL}$) under reduced pressure to give a pale yellow viscous oil. This was purified by silica gel (10 g) column chromatography. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ($3: 2, \mathrm{v} / \mathrm{v}$), gave $0.15 \mathrm{~g}(68 \%)$ of $\mathbf{8 b}$ as colorless viscous material: $R_{f} 0.26$ (system B); ${ }^{1} \mathrm{H}$ NMR $\delta 1.44$ (t, 3, $J=7.09 \mathrm{~Hz}$), 2.1 and $2.17(2 \mathrm{~s}, 6$, $\left.\mathrm{COCH}_{3}\right), 2.66\left(\mathrm{~m}, 1,2^{\prime} \mathrm{a}-\mathrm{H}\right), 3.03\left(\mathrm{~m}, 1,2^{\prime} \mathrm{b}-\mathrm{H}\right), 4.18\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{Cl}\right)$, 4.3-4.6 (m, 5, $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$, and $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.45\left(\mathrm{~m}, 1, \mathrm{H}^{\prime}\right), 6.51\left(2 \mathrm{~d}, \mathrm{l}^{\prime}-\mathrm{H}\right.$, $\left.J_{1^{\prime}, 2^{\prime} \mathrm{a}}=6.04 \mathrm{~Hz}, J_{1^{\prime}, 2 \mathrm{~b}}=6.12 \mathrm{~Hz}\right), 8.17(\mathrm{~s}, 1,8-\mathrm{H}), 8.73(\mathrm{~s}, 1,2-\mathrm{H}) ;$ low-resolution $\mathrm{FAB} \mathrm{MS}, m / z 440.1339\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{ClN}_{5} \mathrm{O}_{6}\right.$ requires 440.1335 amu).
\boldsymbol{N}-[3-(2,3,5-Tri- O-acetyl- β-d-ribofuranosyl)-3H-imidazo[2,1-i]purin8 -yllcytidine $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O-acetate (11a). Compound 8a obtained from tri- O-acetyladenosine ($4 \mathrm{a} ; 6 \mathrm{~g}, 15.3 \mathrm{mmol}$), chloroketene diethyl acetal ($10.5 \mathrm{~g}, 7.0 \mathrm{mmol}$), and p-toluenesulfonic acid ($0.5 \mathrm{~g}, 2.6 \mathrm{mmol}$) was dried under high vacuum for 4 h . Then $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O -acetylcytidine ($9 \mathrm{a} ;{ }^{12}$ $5.6 \mathrm{~g}, 15.3 \mathrm{mmol}$) dissolved in benzene (40 mL) and acetonitrile (40 mL) was added, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 48 h under nitrogen. The TLC (system A) of the reaction mixture indicated the formation of a fluorescent product along with other UV-active compounds, including unreacted 9 a and tri- O-acetyladenosine 4 a . The reaction mixture was concentrated to dryness on a rotary evaporator to give a dark brown residue. This was purified by flash chromatography using $\mathrm{CHCl}_{3} /$ $\mathrm{MeOH}(8 \%, v / v)$. The progress of chromatography was monitored by TLC of the fractions (25 mL). Fractions containing 11a were combined and concentrated to dryness under reduced pressure and purified by recrystallization from ethyl acetate to give $11 \mathrm{a}(0.41 \mathrm{~g}, 17 \%)$ as a pale yellow powder: mp $182-184^{\circ} \mathrm{C}$; $R_{f} 0.43$ (system A); FTIR (KBr) 3120, $1738,1650,1569,1492,1358,1224,1040 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (see Figure 3) $\delta 8.84(\mathrm{~s}, 1,5-\mathrm{H}), 8.68(\mathrm{br} \mathrm{s}, 1,7-\mathrm{H}), 8.21(\mathrm{~s}, 1,2-\mathrm{H}), 7.45(\mathrm{~d}, 1, J$ $\left.=6.2 \mathrm{~Hz}, 6^{\prime \prime}-\mathrm{H}\right), 6.46\left(\mathrm{~d}, 1, J=6.21 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}\right), 6.27(\mathrm{~d}, 1, J=5.08$ $\left.\mathrm{Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 6.14\left(\mathrm{~d}, 1, J=4.55 \mathrm{~Hz}, \mathrm{I}^{\prime \prime \prime}-\mathrm{H}\right), 6.03(\mathrm{dd}, 1, J=5.08,5.32$ $\left.\mathrm{Hz}, 2^{\prime \prime}-\mathrm{H}\right), 5.70\left(\mathrm{dd}, 1, J=4.55,5.14 \mathrm{~Hz}, 2^{\prime \prime \prime}-\mathrm{H}\right), 5.34-5.42\left(\mathrm{~m}, 2,3^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime \prime \prime}-\mathrm{H}\right), 4.31-4.52\left(\mathrm{~m}, 6,4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime \prime}-\mathrm{H}\right), 2.26,2.17,2.12,2.11$, 2.11, and $2.05\left(\mathrm{~s}, 18, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(75.2 \mathrm{~Hz}) \delta 170.28,170.18$, $169.50,169.27,161.05\left(\mathrm{C}-4^{\prime \prime}\right), 139.94\left(\mathrm{C}-6^{\prime \prime}\right), 139.66(\mathrm{C}-2), 138.93$ (C-3a), 137.60 (C-8), 122.92 (C-9b), 100.10 (C-7), 97.44 (C-5"), 88.87, (C-1'), 86.85 (C-1'), 79.48, 73.46, 73.14, 70.48, 70.14, 63.13, 62.98,

Figure 3. Comparisons of the ${ }^{1} \mathrm{H}$ NMR spectra of compounds (a) 1 a and (b) $\mathbf{1 4 a}$, indicating the simplification of the spectrum, the increase in the chemical shift value (δ) of the purine 2-proton $\left(H_{a}\right)$, and the compression of the chemical shift difference between the pyrimidine protons $\left(H_{c}\right.$ and $\left.H_{d}\right)$ upon cyclization.
20.68, 20.64, 20.61, 20.43, 20.38, 20.36; UV $\lambda_{\max }(\mathrm{MeOH}) 322 \mathrm{~nm}(\epsilon$ 13300), 291 (27800) 254 (29100), 247 (29500); low-resolution FAB MS, m / z (relative intensity) $785\left(\mathrm{MH}^{+}, 85\right), 525(58), 269$ (100); high-resolution FAB MS, $m / z \quad 785.2385\left(\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{8} \mathrm{O}_{15}\right.$ requires $785.2378), 269.0905\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{8} \mathrm{O}\right.$ requires 269.0899 amu$)$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{15} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.37 ; \mathrm{H}, 4.74 ; \mathrm{N}, 13.99$. Found: C, 49.09; H, 4.40; N, 13.96 .

3,9-Bis ($\mathbf{2}^{\prime}, 3^{\prime}, 5^{\prime}$-tri- \boldsymbol{O}-acetyl- $\boldsymbol{\beta}$-d-ribofuranosyl)- $\mathbf{3 H}$-pyrimido[$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left.4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[2,1-i]$ purin- $8(9 H)$-one (14a). To a cold $\left(-10^{\circ} \mathrm{C}\right)$ solution of $11 \mathrm{a}(0.3 \mathrm{~g}, 0.38 \mathrm{mmol})$ in a solvent mixture of 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (11 mL) and nitromethane (24 mL) was added dropwise a solution of 2 -nitroiodobenzene diacetate ($12 ; 0.25 \mathrm{~g}, 0.68 \mathrm{mmol}$) in the same solvent mixture (8 mL) over a period of 25 min. The reaction was stirred at $-10^{\circ} \mathrm{C}$ for 1 h and at $0^{\circ} \mathrm{C}$ for 30 min under an atmosphere of nitrogen. During this period, all the starting material had reacted to give a highly blue fluorescent product as indicated by TLC analysis. The solvents were removed by distillation at $35^{\circ} \mathrm{C}$ under reduced pressure, and the residue was purified by column chromatography on silica gel (10 g) using a methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0-2 \%)$ gradient. The fluorescent product 14 a eluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (1\%); the fractions were combined and concentrated under reduced pressure to give 0.16 g of amorphous material. This was purified further by column chromatography to afford 0.11 g (36%) of 14a: $R_{f} 0.33$ (system A); IR (KBr) $1745,1630,1372,1223,1100,1069 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (Figure 3) $\delta 9.88(\mathrm{~s}, 1,5-\mathrm{H}), 8.17(\mathrm{~s}, 1,2-\mathrm{H}), 7.37(\mathrm{~d}, 1, J=8.07 \mathrm{~Hz}$, $10-\mathrm{H}), 6.86(\mathrm{~d}, 1, J=8.03 \mathrm{~Hz}, 11-\mathrm{H}), 6.35\left(\mathrm{~d}, 1, J=5.37 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $6.28\left(\mathrm{~d}, 1, J=5.09 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right), 6.04\left(\mathrm{dd}, 1, J=5.24,5.34 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$, 5.72 (dd, $\left.1, J=4.96,5.13 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 5.55(\mathrm{dd}, 1, J=5.61,5.72 \mathrm{~Hz}$, $\left.3^{\prime}-\mathrm{H}\right), 5.47\left(\mathrm{dd}, 1, J=4.43,5.63 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}\right), 4.38-4.53\left(\mathrm{~m}, 6,4^{\prime}-\mathrm{H}\right.$, $\left.4^{\prime \prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 2.20,2.18,2.18,2.15,2.14$, and $2.1\left(\mathrm{~s}, 18, \mathrm{COCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (75.2 MHz) $\delta 170.23,169.44,169.18,153.48$ (C-12a), 145.74 (C-11a), 145.13 (C-8), 142.68 (C-13a), 139.45 (C-2), 138.08 (C-3a), 135.84 (C-5), 127.55 (C-10), 124.13 (C-13b), 114.55 (C-6a), 101.08 (C-11), 88.66 (C-1"), 86.90 (C-1'), 80.22, 73.22, 73.11, 70.50, 70.18, 63.01, 62.96, 20.65, 20.39, 20.31, 20.27; UV $\lambda_{\max }$ (MeOH) $325 \mathrm{~nm}(\epsilon$ 11800), 289 (23000), 280 (23600), 273 (23300), 250 (26000), 230 (25300); low-resolution FAB MS, m / z (relative intensity) $783\left(\mathrm{MH}^{+}\right.$, 100), 525 (22), 267 (28); high-resolution FAB MS, $m / z 783.2217$ $\left(\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}_{15}\right.$ requires 783.2222$)$, $525.1471\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{8}\right.$, requires $525.1484), 267.0732\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{8} \mathrm{O}\right.$ requires 267.0743 amu$)$.

3,9-Di(β-d-ribofuranosyl)- $3 H$-pyrimido $\left[1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo[2,1-i]purin-8(9H)-one (1). Method A. To a cold solution of 14a
($35 \mathrm{mg}, 0.045 \mathrm{mmol}$) in methanol (2 mL) was added methanolic ammonia (5 mL). The reaction flask was stoppered and stirred at $0^{\circ} \mathrm{C}$ for 4 h . The solution was concentrated to dryness at room temperature under reduced pressure, the residue was triturated with methanol (5 mL), and the mixture was concentrated to dryness in vacuo. The yellow substance thus obtained was dissolved in hot methanol and a few drops of water, and the solution was allowed to cool. The solid that separated was filtered, washed with methanol and dried to give 15 mg (65%) of 1 . Crystallization from water or water/ethanol afforded analytically pure product: $\mathrm{mp} 240-242^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 9.77(\mathrm{~s}, 1,5-\mathrm{H})$, $8.67(\mathrm{~s}, 1,2-\mathrm{H}), 7.98(\mathrm{~d}, 1, J=7.85 \mathrm{~Hz}, 10-\mathrm{H}), 6.93(\mathrm{~d}, 1, J=7.85 \mathrm{~Hz}$, $11-\mathrm{H}), 6.16\left(\mathrm{~d}, 1, J_{1^{\prime}, 2^{\prime}}=4.47 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.1\left(\mathrm{~d}, 1, J_{1^{\prime}, 2^{\prime}}=5.38 \mathrm{~Hz}\right.$, $\left.1^{\prime \prime}-\mathrm{H}\right), 5.6(\mathrm{~d}, 1, J=5.88 \mathrm{~Hz}, \mathrm{ex}, \mathrm{OH}), 5.56(\mathrm{~d}, 1, J=5.4 \mathrm{~Hz}, \mathrm{ex}, \mathrm{OH})$, $5.28(\mathrm{t}, 2, J=4.86 \mathrm{~Hz}, \mathrm{ex}, \mathrm{OH}), 5.22(\mathrm{~d}, 1, J=4.89 \mathrm{~Hz}, \mathrm{ex}, \mathrm{OH}), 5.12$ ($\mathrm{m}, 1, \mathrm{ex}, \mathrm{OH}$), $4.62\left(\mathrm{~m}, 1,2^{\prime}-\mathrm{H}\right), 4.22\left(\mathrm{~m}, 2,2^{\prime \prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 4.1(\mathrm{~m}$, $\left.1,3^{\prime \prime}-\mathrm{H}\right), 4.00\left(\mathrm{~m}, 2,4^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 3.80-3.60\left(\mathrm{~m}, 4,5^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}\right.$-H); FTIR (KBr) $3400,1704,1615,1500,1400,1387,1337,1224,1041 \mathrm{~cm}^{-1}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 350 \mathrm{~nm}(\epsilon 6200), 327$ (9300), 290 (12600), 280 (12700), $250(15700), 232(17000)$; low-resolution FAB MS, m / z (relative intensity) $531\left(\mathrm{MH}^{+}, 12\right), 399$ (4), 267 (4), 157 (100); high-resolution FAB MS, $m / z 531.1585\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{9}\right.$ requires 531.1588 amu$)$.

Method B. A mixture of $14 \mathrm{a}(0.095 \mathrm{~g}, 0.12 \mathrm{mmol})$ in methanolic tert-butylamine ($0.15 \mathrm{M}, 15 \mathrm{~mL}$) was stirred at $0^{\circ} \mathrm{C}$ for 4 h followed by stirring at room temperature for 2 h . The reaction mixture was concentrated under reduced pressure, and the residue was triturated with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and washed thoroughly with ethanol and dried to give $50 \mathrm{mg}(78 \%)$ of 1 , recrystallized from aqueous ethanol.
$\mathbf{2}^{\prime}$-Deoxy- \boldsymbol{N}-[3-(3,5-di- O -acetyl-2-deoxy- β-D-ribofuranosyl)-3Himidazo [2,1-i]purin-8-yl]cytidine $3^{\prime}, 5^{\prime}-\mathrm{Di}-\mathrm{O}$-acetate (11b). The synthesis was similar to that for 11a. Compound 8b made from $3^{\prime}, 5^{\prime}$ di- O -acetyl-2'-deoxyadenosine ($4 \mathrm{~b} ; 5 \mathrm{~g}, 14.9 \mathrm{mmol}$), chloroketene diethyl acetal ($5 ; 9 \mathrm{~g}, 60 \mathrm{mmol}$), and p-toluenesulfonic acid ($0.15 \mathrm{~g}, 0.8 \mathrm{mmol}$) in ethyl acetate (85 mL) was dissolved in benzene (60 mL), and p toluenesulfonic acid ($0.15 \mathrm{~g}, 0.8 \mathrm{mmol}$), $3^{\prime}, 5^{\prime}$-di- O-acetyl-2-deoxycytidine $\left(9 \mathrm{~h} ;{ }^{13 \mathrm{~b}} 4.6 \mathrm{~g}, 14.8 \mathrm{mmol}\right)$, and dichloromethane (30 mL) were added. The resulting mixture was heated to $80^{\circ} \mathrm{C}$ under nitrogen for 48 h . The TLC analysis (system A) revealed the presence of several UV-active products. One of the products was fluorescent with slightly higher R_{f} value than that of $\mathbf{4 b}$. The solution was filtered, and the residue was washed thoroughly with benzene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) and dried to give 2.3 g of 9 b . The filtrate was concentrated under reduced pressure to a thick syrup and purified by flash chromatography using a methanol/chloro-

Figure 4. Assignments of the ${ }^{13} \mathrm{C}$ NMR signals for 14 c by proton coupling.
form ($0-8 \%, v / v$) gradient. The desired product $11 b$ eluted after the ethoxyetheno derivative $\mathbf{6 b}$. The fractions containing 11 b were combined and concentrated under reduced pressure to give a brown amorphous substance. This was purified twice by flash chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9 \%, \mathrm{v} / \mathrm{v})$ to give 0.465 of 11 b as amorphous but homogeneous material. Further purification by recrystallization from aqueous ethanol gave analytically pure $11 \mathrm{~b}: \mathrm{mp} 130-132{ }^{\circ} \mathrm{C} ; R_{f} 0.48$ (system A); FTIR (KBr) 3120, 1750, 1650, 1570, 1500, 1360, 1230, 1110, 1055, 940, $780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 10.91(\mathrm{~s}, 1, \mathrm{ex}, \mathrm{NH}), 8.84(\mathrm{~s}, 1,4-\mathrm{H})$, $8.71(\mathrm{~s}, 1,7-\mathrm{H}), 8.26(\mathrm{~s}, 1,2-\mathrm{H}), 7.58\left(\mathrm{~d}, 1, J=6.25 \mathrm{~Hz}, 6^{\prime \prime}-\mathrm{H}\right)$, $6.48-6.55$ (dd, $\left.2,1^{\prime}-\mathrm{H}, \mathrm{I}^{\prime \prime}-\mathrm{H}, J=6.41,7.79 \mathrm{~Hz}\right), 6.34(\mathrm{~d}, 1, J=6.25$ $\left.\mathrm{Hz}, 5^{\prime \prime}-\mathrm{H}\right), 5.51\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), 5.22\left(\mathrm{~m}, 1,3^{\prime \prime \prime}-\mathrm{H}\right), 4.30-4.50\left(\mathrm{~m}, 6,4^{\prime}-\mathrm{H}\right.$ and $4^{\prime \prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$ and $\left.5^{\prime \prime \prime}-\mathrm{H}\right), 3.11$ and $2.73\left(\mathrm{~m}, 4,2^{\prime}-\mathrm{H}\right.$ and $\left.2^{\prime \prime \prime}-\mathrm{H}\right)$, $2.17,2.12,2.08$, and $2.05\left(\mathrm{~s}, 12, \mathrm{COCH}_{3}\right)$; UV $\lambda_{\max }(\mathrm{MeOH}) 340 \mathrm{~nm}$ ($\epsilon 12700$), 298 (29 700), 290 (30200), 253 (31900), 247 (31 800); lowresolution FAB MS, m / z (relative intensity) $669\left(\mathrm{MH}^{+}, 55\right), 469(58)$, 269 (100); high-resolution FAB MS, $m / z 669.2289\left(\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{8} \mathrm{O}_{11}\right.$ requires 669.2271$), 469.1580\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{6}\right.$ requires 469.1586 amu$)$.

3,9-Bis ($\mathbf{3}^{\prime}, 5^{\prime}$-di- O -acetyl- $\mathbf{2}^{\prime}$-deoxy- $\boldsymbol{\beta}$-D-ribofuranosyl)- $\mathbf{3 H}$-pyrimido[$1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}$ imidazo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $\left.2,1-i\right]$ purin- $8(9 H)$-one (14b). The oxidation procedure was similar to that used for 14 a . The reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 1.5 h when the TLC (system A) of the reaction mixture indicated complete conversion to a highly fluorescent product. The solvents were distilled under reduced pressure (bath temperature $<35^{\circ} \mathrm{C}$), and the residue was charged on a silica gel column. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(0-2 \%$, v / v) gradient gave 14 b (56%) as a pale yellow amorphous material: R_{f} 0.36 (system A); FTIR (KBr) 3100, 1740, 1690, 1640, 1620, 1500, 1370, 1340, $1230,1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{2}\right)_{2} \mathrm{SO}\right) \delta 9.80(\mathrm{~s}, 1,5-\mathrm{H}), 8.17$ $\left(\mathrm{s}, 1,2^{\prime}-\mathrm{H}\right), 7.45(\mathrm{~d}, 1, J=8.08 \mathrm{~Hz}, 10-\mathrm{H}), 6.76(\mathrm{~d}, 1, J=8.08 \mathrm{~Hz}$, $11-\mathrm{H}), 6.60\left(\mathrm{~m}, 2,1^{\prime}-\mathrm{H}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right), 5.50\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), 5.37\left(\mathrm{~m}, \mathrm{I}, 3^{\prime \prime}-\mathrm{H}\right)$, 4.3-4.5 (m, 6, $\left.4^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 3.05-2.2\left(\mathrm{~m}, 4,2^{\prime}-\mathrm{H}\right.$ and $\left.2^{\prime \prime}-\mathrm{H}\right)$, 2.18, 2.16, $2.12\left(\mathrm{~s}, 12, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75.2 MHz) $\delta 170.29$, 170.17, 153.12 (C-12a), 145.76 (C-11a), 144.90 (C-8), 142.71 (C-13a), 138.75 (C-2), 138.07 (C-3a), 135.58 (C-5), 126.82 (C-10), 123.82 (C13b), 114.36 (C-6a), 100.55 (C-11), 86.41 (C-1"), 84.85 (C-1'), 82.68 , 82.62, 74.40, 74.09, 63.67, 63.63, 37.74, 37.93, 20.89, 20.72, 20.67; UV $\lambda_{\text {max }}(\mathrm{MeOH}) 324 \mathrm{~nm}(\epsilon 8800)$, 289 (17500), 280 (17800), 272 (17200), 249 (24 700), 230 (18400); low-resolution FAB MS, m / z (relative intensity) $667\left(\mathrm{MH}^{+}, 20\right), 467$ (15), 119 (100); high-resolution FAB MS, $m / z 667.2108\left(\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{11}\right.$ requires 667.2105), $267.0735\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{8} \mathrm{O}\right.$ requires 267.0743 amu).

3,9-Bis(2^{\prime}-deoxy- β-d-ribofuranosyl)-3H-pyrimido $\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $\left.2,1-i\right]$ purin- $8(9 H)$-one (2). Methods A and B
were used for the deacetylation as in the preparation of 1 . A better yield (72%) was obtained with methanolic tert-butylamine than with methanolic ammonia: $\mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 9.74(\mathrm{~s}, 1,5-\mathrm{H})$, $8.62(\mathrm{~s}, 1,2-\mathrm{H}), 7.92(\mathrm{~d}, 1, J=7.88 \mathrm{~Hz}, 10-\mathrm{H}), 6.91(\mathrm{~d}, 1, J=7.88 \mathrm{~Hz}$, $11-\mathrm{H}), 6.53\left(\mathrm{~d}, 2, J_{1^{\prime} \cdot 2^{\prime}}=6.01 \mathrm{~Hz}, \mathrm{I}^{\prime}-\mathrm{H}\right.$ and $\left.\mathrm{I}^{\prime \prime}-\mathrm{H}\right), 5.40(\mathrm{~m}, 2, \mathrm{ex}, \mathrm{OH})$, 5.17 (br s, 1, ex, OH), 5.02 (br s, 1, ex, OH), 4.46 (m, 1, $\left.3^{\prime}-\mathrm{H}\right), 4.35(\mathrm{~m}$, $\left.1,3^{\prime \prime}-\mathrm{H}\right), 3.91\left(\mathrm{~m}, 2,4^{\prime}-\mathrm{H}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}\right), 3.8-3.43\left(\mathrm{~m}, 4,5^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right)$, 2.8-2.2 (m, 4, $2^{\prime}-\mathrm{H}$ and $\left.2^{\prime \prime}-\mathrm{H}\right) ; \mathrm{UV} \lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 350 \mathrm{~nm}(\epsilon 15000), 332$ (21600), 280 (12000), 272 (13700), 232 (28600); low-resolution FAB MS, m / z (relative intensity) $499\left(\mathrm{MH}^{+}, 22\right), 383$ (6), 267 (10), 119 (100); high-resolution FAB MS, $m / z 499.1695\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{7}\right.$ requires 499.1690 amu).
\boldsymbol{N}-[3-(3,5-Di- O-acetyl-2-deoxy- β-d-ribofuranosyl)-3H-imidazo[2,1-i]purin-8-yllcytidine $\mathbf{2}^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- \boldsymbol{O}-acetate (11c). This was prepared from 4 b and 9 a in a condensation similar to that used for 11b. The solvents were removed by distillation under reduced pressure, and the residue was purified by flash chromatography using a $\mathrm{CHCl}_{3} / \mathrm{MeOH}(7-10 \%$, v/v) gradient. The progress of separation was monitored by TLC (system A). The desired product 11c eluted soon after the ethoxyetheno derivative 6 b. Fractions containing 11c were combined, concentrated under reduced pressure, and subjected twice to flash chromatography using CHCl_{3} / $\mathrm{MeOH}(7 \%, v / v)$. Recrystallization from ethanol furnished an analytically pure sample: $\mathrm{mp} 142-143^{\circ} \mathrm{C} ; R_{f} 0.48$ (system A); FTIR (KBr) $3120,1739,1647,1563,1499,1365,1224,1041 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ((C$\left.\left.\mathrm{D}_{3}\right)_{2} \mathrm{SO}\right) \delta 10.48(\mathrm{~s}, 1, \mathrm{ex}, \mathrm{NH}), 8.81(\mathrm{~s}, 1,5-\mathrm{H}), 8.68(\mathrm{~s}, 1,7-\mathrm{H}), 8.18$ (s, 1, 2-H), 7.49 (d, $\left.1, J=7.26 \mathrm{~Hz}, 6^{\prime \prime}-\mathrm{H}\right), 6.52$ (dd, $1, J=7.02,6.66$ $\left.\mathrm{Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 6.39\left(\mathrm{~d}, 1, J=7.26 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}\right), 6.17\left(\mathrm{~d}, 1, J_{1^{\prime}, 2^{\prime}}=4.18 \mathrm{~Hz}\right.$, $\left.1^{\prime \prime \prime}-\mathrm{H}\right), 5.5-5.37\left(\mathrm{~m}, 3,2^{\prime \prime \prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 4.49-4.3$ (m, 6, $4^{\prime}-\mathrm{H}^{\prime}, 4^{\prime \prime \prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$, $\left.5^{\prime \prime \prime}-\mathrm{H}\right), 3.1-3.05\left(\mathrm{~m}, 1,2^{\prime} \mathrm{a}-\mathrm{H}\right), 2.72-2.66\left(\mathrm{~m}, 1,2^{\prime} \mathrm{b}-\mathrm{H}\right), 2.17,2.11,2.1$, and $2.07\left(\mathrm{~s}, 15, \mathrm{COCH}_{3}\right)$; UV $\lambda_{\max }(\mathrm{MeOH}) 330 \mathrm{~nm}(\epsilon 12500), 291$ (28700), 252 (29000), 247 (29300); fluorescence $\lambda_{\max }^{e_{\max }} 418 \mathrm{~nm}, \lambda_{\max }^{\text {ex }} 325$ nm (absolute ethanol); low-resolution FAB MS, m / z (relative intensity) $727\left(\mathrm{MH}^{+}, 100\right), 527(12), 469(32), 269(80)$; high-resolution FAB MS, $m / z 727.2310\left(\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}_{13}\right.$ requires 727.2324), $469.1598\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{6}\right.$ requires 469.1586), $269.0904\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{8} \mathrm{O}\right.$ requires 269.0902 amu).

3-(3', 5^{\prime}-Di- O-acetyl-2'-deoxy- $\boldsymbol{\beta}$-D-ribofuranosyl)-9-($2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O -acetyl- β-D-ribofuranosyl)-3H-pyrimido $\left[1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ -imidazo[2,1-i]purin-8(9H)-one (14c). Compound 14 c was synthesized by the same oxidation method that was used for 14a and 14b in 25% yield: $R_{f} 0.36$ (system A); IR (KBr) 1746, 1670, 1630, 1570, 1492, 1365, $1224,1048 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 9.75(\mathrm{~s}, \mathrm{I}, 5-\mathrm{H}), 8.1(\mathrm{~s}, 1$, $2-\mathrm{H}), 7.33(\mathrm{~d}, 1, J=8.03 \mathrm{~Hz}, 10-\mathrm{H}), 6.75(\mathrm{~d}, 1, J=8.03 \mathrm{~Hz}, 11-\mathrm{H})$, $6.48\left(\mathrm{dd}, 1, J_{1^{\prime} 2^{\prime}}=6.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.28\left(1, \mathrm{~d}, J=5.46 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right), 5.51$ (dd, $\left.1, J_{1^{\prime}, 2^{\prime}}=5.46 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=5.63 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 5.44-5.38\left(\mathrm{~m}, 2,3^{\prime}-\mathrm{H}\right.$,

Figure 5. Long-range heteronuclear ${ }^{1} \mathrm{H} /{ }^{3} \mathrm{C}$ correlations for 14 c .
$\left.\left.3^{\prime \prime}-\mathrm{H}\right), 4.41-4.26\left(\mathrm{~m}, 6,4^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 5^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 3.02-2.95(\mathrm{~m}, 1$, $\left.2^{\prime} \mathrm{a}-\mathrm{H}\right), 2.7-2.63\left(\mathrm{~m}, 1,2^{\prime} \mathrm{b}-\mathrm{H}\right), 2.11,2.06$, and $2.03\left(\mathrm{~s}, 15, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.31,170.15,170.01,169.46,153.26$ (C-12a), 145.59 (C-11a), 145.06 (C-8), 142.67 (C-13a), 138.93 (C-2), 138.00 (C-3a), 135.54 (C-5), $127.50(\mathrm{C}-10), 123.72$ (C-13b), 114.44 (C-6a), 100.98 (C-11), 88.56 ($\mathrm{C}-1^{\prime \prime}$), $84.85\left(\mathrm{C}-1^{\prime}\right), 82.51\left(\mathrm{C}-4^{\prime}\right), 80.15$ ($\left.\mathrm{C}-4^{\prime \prime}\right), 74.34$ ($\mathrm{C}-3^{\prime}$), 73.02 (C-2 $2^{\prime \prime}$), 70.11 ($\left.\mathrm{C}-3^{\prime \prime}\right), 63.60\left(\mathrm{C}-5^{\prime}\right), 62.98$ (C-5 $\left.{ }^{\prime \prime}\right), 37.54\left(\mathrm{C}-2^{\prime}\right)$, 20.81, 20.67, 20.65, 20.38, 20.33 (see Figures 4-6); UV $\lambda_{\max }(\mathrm{MeOH})$ $325 \mathrm{~nm}(\epsilon 12500$), 290 (23 200), 273 (23200), 250 (27300), 230 (26200); low-resolution FAB MS, m / z (relative intensity) 725 (MH $^{+}$, 80), 525 (30), 467 (12), 267 (88), 119 (100); high-resolution FAB MS, $m / z 725.2154\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{8} \mathrm{O}_{13}\right.$ requires 725.2167$)$, $525.1487\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{8}\right.$ requires 525.1482), $267.0741\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{8} \mathrm{O}\right.$ requires 267.0743 amu$)$.

3-(2'-Deoxy- β-D-ribofuranosyl)-9-(β-D-ribofuranosyl)-3H-pyrimido[$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{2}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[2,1-i]$ purin- $8(9 H)$-one (3). Methods A and B were used for the deacetylation of the pentaacetate as with the hexaacetate 14 a and tetraacetate $\mathbf{1 4 b}$. A better yield (78%) was obtained with methanolic tert-butylamine than with methanolic ammonia: mp 252 ${ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 9.76(\mathrm{~s}, 1,5-\mathrm{H}), 8.62(\mathrm{~s}, 1,2-\mathrm{H}), 7.96$ $(\mathrm{d}, 1, J=8.04 \mathrm{~Hz}, 10-\mathrm{H}), 6.92(\mathrm{~d}, 1, J=8.04 \mathrm{~Hz}, 11-\mathrm{H}), 6.54(\mathrm{dd}, 1$, $\left.J_{1^{\prime} 2^{2}}=6.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.16\left(\mathrm{~d}, 1, J_{1^{\prime} 2^{\prime}}=5.05 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right), 5.55(1, \mathrm{~d}, J$ $=5.4 \mathrm{~Hz}$, ex, OH$), 5.39(\mathrm{~d}, 1, J=4.18 \mathrm{~Hz}, \mathrm{ex}, \mathrm{OH}), 5.26(\mathrm{t}, \mathrm{l}, J=4.93$ $\mathrm{Hz}, \mathrm{ex}, \mathrm{OH}), 5.21(\mathrm{~d}, 1, J=5.14 \mathrm{~Hz}, \mathrm{ex}, \mathrm{OH}), 5.00(\mathrm{t}, 1, J=5.39 \mathrm{~Hz}$, ex, OH$), 4.46\left(\mathrm{~m}, 1,2^{\prime \prime}-\mathrm{H}\right), 4.22\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), 4.08\left(\mathrm{~m}, 1,3^{\prime \prime}-\mathrm{H}\right), 3.98$ $\left(\mathrm{m}, 1,4^{\prime}-\mathrm{H}\right), 3.73\left(\mathrm{~m}, 1,4^{\prime \prime}-\mathrm{H}\right), 3.8-3.5\left(\mathrm{~m}, 4,5^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 2.76(\mathrm{~m}$, 1, 2'a-H), $2.43\left(\mathrm{~m}, 1,2^{\prime} \mathrm{b}-\mathrm{H}\right)$; FTIR (KBr) $3400,1697,1619,1500,1485$, $1407,1337,1302,1224,1076,740 \mathrm{~cm}^{-1}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 326 \mathrm{~nm}(\epsilon$ 10700), 288 (13200), $280(13800), 250(17100), 230(19100)$; lowresolution FAB MS, m / z (relative intensity) $515\left(\mathrm{MH}^{+}, 10\right), 399(5)$, 267 (10), 119 (100); high-resolution FAB MS, $m / z 515.1633$ $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{8}\right.$ requires 515.1638 amu$)$.
N-[3-(2,3,5-Tri- O-acetyl- β-D-ribofuranosyl)-3H-imidazo[2,1-i]purin8 -yl]adenosine $2^{\prime}, 3^{\prime}, 5^{\prime}-\mathrm{Tri}-\mathrm{O}$-acetate (19a). A mixture of $2^{\prime}, 3^{\prime}, 5-$ tri- O acetyladenosine ($4 \mathbf{a} ; 6 \mathrm{~g}, 15.3 \mathrm{mmol}$), chloroketene diethyl acetal ($5 ; 9$ $\mathrm{g}, 60 \mathrm{mmol}$), and p-toluenesulfonic acid ($0.4 \mathrm{~g}, 2 \mathrm{mmol}$) in ethyl acetate $(125 \mathrm{~mL})$ was stirred at room temperature for 16 h under nitrogen atmosphere. The TLC analysis (system A) revealed quantitative conversion to 7a. The ethyl acetate was distilled under reduced pressure, and excess of 5 was removed by repeated distillation with DMF ($6 \times 15 \mathrm{~mL}$) to give a pale yellow syrup. This was dried in vacuo for 3 h and dissolved in benzene (60 mL), and $4 \mathrm{a}(6 \mathrm{~g}, 15.3 \mathrm{mmol})$ and p-toluenesulfonic acid $(0.4 \mathrm{~g}, 2 \mathrm{mmol})$ were added. This mixture was dissolved by the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and acetonitrile (20 mL) and heated at $80^{\circ} \mathrm{C}$ under nitrogen. After 48 h an additional $0.8 \mathrm{~g}(4 \mathrm{mmol})$ of p-toluenesulfonic
acid was added. The heating was continued for another 24 h , when TLC of the reaction mixture revealed that most of the chloroimidate had reacted. The solution was concentrated under reduced pressure, when some 4a separated. The mixture was cooled and filtered, and the residue was washed thoroughly with benzene/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1)$ and dried to give 5.5 g of unreacted 4 a . The filtrate and the washings were combined and concentrated, when more of $4 a$ crystallized. Concentration, filtration, washing with benzene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1)$, and drying yielded another 3.0 g . The filtrate and washings were combined and concentrated under reduced pressure, and the residue was purified by flash chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}(6 \%, v / v)$. The desired product 19a had slightly higher R_{f} value than that of 4 a and was fluorescent. Various fractions containing 19a were combined and concentrated under reduced pressure on a rotary evaporator to give 1 g of amorphous material. Further purification by flash chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}(8 \%, v / v)$ and recrystallization from ethanol afforded 19a as a pale yellow powder: mp $123-125{ }^{\circ} \mathrm{C} ; R_{f} 0.38$ (system A); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.67$ (s, 1, ex, NH), 8.87 (s, $\left.1,8^{\prime \prime}-\mathrm{H}\right), 8.53(\mathrm{~s}, 1,7-\mathrm{H}), 8.15(\mathrm{~s}, 1,2-\mathrm{H}), 6.37\left(\mathrm{~d}, 1, J_{1^{\prime} 2^{\prime} \mathrm{s}}\right.$ $\left.=5.76 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.27\left(\mathrm{~d}, 1, J_{1^{\prime}, 2^{\prime} \mathrm{b}}=5.17 \mathrm{~Hz}, 1^{\prime \prime \prime}-\mathrm{H}\right), 6.17(\mathrm{dd}, 1, J=$ $5.73 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), 6.07 (dd, $1, J=5.35 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}$), 5.82 (dd, $1, J=5.12$, $\left.4.35 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 5.73\left(\mathrm{dd}, 1, J=4.99,4.88 \mathrm{~Hz}, 3^{\prime \prime \prime}-\mathrm{H}\right), 4.48\left(\mathrm{~m}, 6,4^{\prime}-\mathrm{H}\right.$, $\left.4^{\prime \prime \prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 2.05,2.09,2.11,2.16$, and $2.17\left(\mathrm{~s}, 18, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $170.29,169.46,169.34,152.62\left(\mathrm{C}-2^{\prime \prime}\right), 150.49\left(\mathrm{C}-6^{\prime \prime}\right)$, $149.69\left(\mathrm{C}-4^{\prime \prime}\right), 142.06$ (C-8), 141.07 (C-8'), 139.51 (C-2), 138.62 (C-3a), 137.87 (C-9a), 134.90 (C-5), 123.43 (C-9b), 120.78 (C-5'), 97.63 (C-7), $86.72\left(\mathrm{C}-1^{\prime \prime}\right), 85.76\left(\mathrm{C}-1^{\prime}\right), 80.35$ and 80.12 ($\mathrm{C}-4^{\prime}$ and $\left.\mathrm{C}-4^{\prime \prime}\right), 73.08$ and 73.03 ($\mathrm{C}-2^{\prime}$ and $\mathrm{C}-2^{\prime \prime}$), 70.69 and 70.55 ($\mathrm{C}-3^{\prime}$ and $\mathrm{C}-3^{\prime \prime}$), 63.15 and 63.05 ($\mathrm{C}-5^{\prime}$ and $\mathrm{C}-5^{\prime \prime}$), 20.62, 20.54, 20.43, 20.28; UV $\lambda_{\text {max }}(\mathrm{MeOH}) 320 \mathrm{~nm}$ ($\epsilon 11300$), 286 (33900), 252 (30900); low-resolution FAB MS, m / z (relative intensity) $809\left(\mathrm{MH}^{+}, 60\right), 551$ (21), 293 (42), 119 (100); high-resolution FAB MS, $m / z 809.2487\left(\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{10} \mathrm{O}_{14}\right.$ requires 809.2490 amu).

3,10-Bis ($2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyl- $\boldsymbol{\beta}$-d-ribofuranosyl) $\mathbf{3 H}, 10 H$-purino[$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left.4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $\left.2,1-i\right]$ purine (20a). To a cold (-10 ${ }^{\circ} \mathrm{C}$) solution of $19 \mathrm{a}(0.27 \mathrm{~g}, 0.334 \mathrm{mmol})$ in a solvent mixture of 1,1,1,3,3,3-hexafluoro-2-propanol and nitromethane ($25 \mathrm{~mL}, 1: 5 \mathrm{M}$) was added dropwise a solution of 2-nitroiodobenzene diacetate $(0.19 \mathrm{~g}, 0.52$ mmol) in 5 mL of the same solvent mixture. The solution was stirred at $-10^{\circ} \mathrm{C}$ under nitrogen for 1 h and at room temperature for 30 min . Solvents were removed by distillation under reduced pressure (bath temperature, $35^{\circ} \mathrm{C}$), and the dark residue was purified by flash chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9 \%, v / v)$ as solvent. Fractions containing the fluorescent product 20a were combined, concentrated under reduced pressure on a rotary evaporator, and dried under high vacuum to give
$0.115 \mathrm{~g}(45 \%)$ as amorphous material that was homogeneous on TLC: $R_{f} 0.20$ (system A); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.46(\mathrm{~s}, 1,5-\mathrm{H}), 7.86(\mathrm{~s}, 1$, $2-\mathrm{H}), 6.2\left(\mathrm{~d}, J_{1^{\prime} .2^{\prime}}=4.21 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.9\left(\mathrm{dd}, 1, J_{2^{\prime} .3^{\prime}}=4.67 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$, $5.57\left(\mathrm{dd}, 1, J_{3^{\prime} 4^{\prime}}=4.96 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.39-4.22\left(\mathrm{~m}, 3,4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 2.05$, $2.05,2.04\left(\mathrm{~s}, 9, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75.2 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 170.41$, 169.56, 152.51 (C-13a), 141.45 (C-12b and $\mathrm{C}-14 \mathrm{a}$), 138.81 (C-11), 137.51 (C-3a), 133.52 (C-5), 122.48 (C-12a), 111.41 (C-6a), 86.58 (C$\left.1^{\prime}\right), 79.89\left(\mathrm{C}-4^{\prime}\right), 73.74$ (C-2'), 70.36 (C-3'), 62.96 (C-5'), 20.59, 20.41; $\mathrm{UV} \lambda_{\max }(\mathrm{MeOH}) 320 \mathrm{~nm}(\epsilon 10400), 276(80900), 236(19700)$; lowresolution FAB MS, m / z (relative intensity) 807 ($\mathrm{MH}^{+}, 32$), 549 (22), 291 (30), 19 (100); high-resolution FAB MS, $m / z 807.2355$ $\left(\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{10} \mathrm{O}_{14}\right.$ requires 807.2337 amu$)$.

3,10-Di(β-D-ribofuranosyl)-3H,10H-purino[$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[2,1-i]$ purine (15). Either methanolic ammonia or methanolic tert-butylamine could be used for deacetylation of 20a to 15 (yield $\leq 83 \%$): mp $275^{\circ} \mathrm{C} \mathrm{dec}{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 9.98(\mathrm{~s}, 1,5-\mathrm{H})$, $8.71(\mathrm{~s}, 1,2-\mathrm{H}), 6.14\left(\mathrm{~d}, 1, J_{1^{\prime}, 2^{\prime}}=5.43 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.63(\mathrm{~d}, \mathrm{l}, J=5.8$ $\mathrm{Hz}, \mathrm{ex}, \mathrm{OH}), 5.33(\mathrm{~d}, \mathrm{l}, J=4.90 \mathrm{~Hz}$, ex, OH$), 5.16(\mathrm{t}, \mathrm{l}, J=5.18 \mathrm{~Hz}$, $\mathrm{OH}), 4.66\left(\mathrm{~m}, 1,2^{\prime}-\mathrm{H}\right), 4.23\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), 4.02\left(\mathrm{~m}, 1,4^{\prime}-\mathrm{H}\right), 3.72(\mathrm{~m}$, 1, $\left.5^{\prime}-\mathrm{H}\right), 3.64\left(\mathrm{~m}, \mathrm{l}, 5^{\prime}-\mathrm{H}\right)$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 322 \mathrm{~nm}(\epsilon 12400), 275$ (58500), 270 (57900), 238 (20 500); low-resolution FAB MS, m / z (relative intensity) $555\left(\mathrm{MH}^{+}, 12\right), 423(10), 291(5), 119$ (100); highresolution FAB MS, $m / z 555.1703\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{10} \mathrm{O}_{8}\right.$ requires 555.17029 amu).
$\mathbf{2}^{\prime}$-Deoxy- \boldsymbol{N}-[3-(3,5-di- O-acetyl-2-deoxy- β-d-ribofuranosyl)-3H-imidazo[2,1-i]purin-8-yljadenosine $3^{\prime}, 5^{\prime}$-Di- O -acetate (19b). A mixture of $3^{\prime}, 5^{\prime}$-di- O-acetyl-2'-deoxyadenosine ($4 \mathrm{~b} ; 5 \mathrm{~g}, 14.9 \mathrm{mmol}$), chloroketene diethyl acetal ($5 ; 9 \mathrm{~g}, 60 \mathrm{mmol}$), and p-toluenesulfonic acid (2.6 mmol) in ethyl acetate (125 mL) was stirred at room temperature for 16 h under nitrogen. After the removal of ethyl acetate under reduced pressure, the excess of 5 was removed by repeated codistillation with DMF $(6 \times 15$ mL), and the residue was dried in vacuo for 4 h . This material was dissolved in dry benzene (50 mL), and p-toluenesulfonic acid ($0.9 \mathrm{~g}, 4.7$ mmol) and $4 \mathrm{~b}(5 \mathrm{~g}, 14.9 \mathrm{mmol})$ were added. The resulting mixture was dissolved by the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ and was heated at $80^{\circ} \mathrm{C}$ for 48 h under nitrogen. The TLC (system A) of the reaction mixture revealed the presence of several UV-active products of which the major component was $\mathbf{4} \mathbf{b}$. There were two fluorescent spots, and one had a slightly higher R_{f} value than that of $\mathbf{4 b}$. The solvents were removed under reduced pressure, and the residue was triturated with ethyl acetate, which caused some of the unreacted $\mathbf{4 b}$ to separate. The mixture was cooled and filtered, and the solid was washed with ethyl acetate and dried to give 3.0 g of 4 b . The filtrate and the washings were combined and concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel using chloroform/methanol $(7.5 \%, v / v)$. The desired product 19b eluted after the ethoxyetheno derivative $\mathbf{6 b}$. The fractions containing 19 b were combined and concentrated in vacuo to give brown amorphous material. Further elution of the column gave 4.5 g of $\mathbf{4 b}$. Compound 19 b was again purified by flash chromatography on silica gel using chloroform/methanol ($8 \%, \mathrm{v} / \mathrm{v}$) to afford 0.41 g of amorphous material. Crystallization from aqueous alcohol gave 19 b as a pale yellow powder: $\mathrm{mp} 143-145^{\circ} \mathrm{C} ; R_{f} 0.33$ (system A); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.34$ (s, 1, ex, NH), $8.82\left(\mathrm{~s}, 1,8^{\prime \prime}-\mathrm{H}\right)$, 8.76 (s, 1, 5-H), 8.68 (s, 1, 2"-H), 8.57 (s, 1, 7-H), 8.16 (s, 1, 2-H), 6.58 (dd, $\left.1^{\prime}, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=5.89 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime 6}}=8.61 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.52\left(\mathrm{t}, 1, J_{1^{\prime} 2^{\prime} \mathrm{s}}=5.80\right.$, $\left.J_{1^{\prime}, 22^{\prime}}=8.68 \mathrm{~Hz}, 1^{\prime \prime \prime}-\mathrm{H}\right), 5.58\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), 5.50\left(\mathrm{~m}, 1,3^{\prime \prime \prime}-\mathrm{H}\right), 4.40(\mathrm{~m}$, $\left.6,4^{\prime}-\mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 3.23,3.02$, and 2.68 (m, 4, 2'-H, $\left.2^{\prime \prime \prime}-\mathrm{H}\right)$, $2.17,2.16,2.12$, and $2.05\left(\mathrm{~s}, 12 \mathrm{COCH}_{3}\right)$; UV $\lambda_{\max }(\mathrm{MeOH}) 320 \mathrm{~nm}(\epsilon$ 12300), 286 (32900), 250 (29900); low-resolution FAB MS, m / z (relative intensity) $693\left(\mathrm{MH}^{+}, 30\right), 493$ (22), 293 (61), 119 (100); high-resolution FAB MS, $m / z 693.2361 \quad\left(\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{10} \mathrm{O}_{10}\right.$ requires 693.2381 amu). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{10} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.70 ; \mathrm{H}, 4.64$; $\mathrm{N}, 19.74$. Found: $\mathrm{C}, 50.60 ; \mathrm{H}, 4.48 ; \mathrm{N}, 19.93$.

3,10-Bis ($3^{\prime}, 5^{\prime}$-di- O-acetyl-2'-deoxy- β-d-ribofuranosyl)- $\mathbf{3 H}, 10 \mathrm{H}$ purino $\left[1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[2,1-i]$ purine (20b). To a stirred cold $\left(-10^{\circ} \mathrm{C}\right)$ solution of $19 \mathrm{~b}(0.28 \mathrm{~g}, 0.4 \mathrm{mmol})$ in a solvent mixture of 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol and nitromethane ($1: 2, \mathrm{v} / \mathrm{v} ; 25 \mathrm{~mL}$) was added dropwise a solution of 2 -nitroiodobenzene diacetate ($0.22 \mathrm{~g}, 0.6 \mathrm{mmol}$) in 7 mL of the same solvent mixture. The reactants were stirred at $-10^{\circ} \mathrm{C}$ for 1 h and at room temperature for 30 \min under nitrogen, when the TLC (system A) of the reaction mixture indicated complete conversion of 19 b . The solvents were removed by distillation under reduced pressure (bath temperature $35^{\circ} \mathrm{C}$) and the dark residue was purified by flash chromatography using chloroform/ methanol $(8 \%, v / v)$. The progress of separation was followed by TLC of the fractions (10 mL). Fractions containing 20b were combined, concentrated under reduced pressure, and finally dried to give 0.10 g (35%) as homogeneous material, which was recrystallized from methanol $\mathrm{mp} 133-135^{\circ} \mathrm{C} ; R_{f} 0.14$ (system A); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.28$ (s, 1 $5-\mathrm{H}), 8.03(\mathrm{~s}, 1,2-\mathrm{H}), 6.44\left(\mathrm{dd}, 1, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=6.61 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.81 \mathrm{~Hz}\right.$
$\left.1^{\prime}-\mathrm{H}\right), 5.45\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), 4.38\left(\mathrm{~m}, 3,4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.07$ and $2.79(\mathrm{~m}$, $\left.2,2^{\prime}-\mathrm{H}\right), 2.15$ and $2.07\left(\mathrm{~s}, 6, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(75.2 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ $\delta 170.47,170.34,153.20(\mathrm{C}-13 \mathrm{a}), 133.21(\mathrm{C}-5), 122.82(\mathrm{C}-12 \mathrm{a}), 111.48$ (C-6a), 84.81 (C-1), 82.45 (C-4'), 74.32 (C-3'), 63.71 (C-5'), 37.47 (C-2'), 20.88, 20.71; UV $\lambda_{\text {max }}$ (MeOH) $320 \mathrm{~nm}(\epsilon 10400), 276$ (80900), 237 (19400); low-resolution FAB MS, m / z (relative intensity) 691 ($\mathrm{MH}^{+}, 90$), 491 (73), 291 (100); high-resolution FAB MS, $m / z 691.2221$ $\left(\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{10} \mathrm{O}_{10}\right.$ requires 691.2227 amu$)$.

3,10-Bis(2^{\prime}-deoxy- $\boldsymbol{\beta}$-d-ribofuranosyl)- $\mathbf{3 H}, 10 H$-purino[$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]-$ imidazo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $\left.2,1-i\right]$ purine (16). Deacetylation of 20b was accomplished with methanolic ammonia at $0^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 20^{\circ} \mathrm{C}$ for 3 h (68%), or with methanolic tert-butylamine at $0^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ for $2 \mathrm{~h}(66 \%)$. Purification was effected by crystallization from aqueous methanol to give colorless 16: $\mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 9.93(\mathrm{~s}, 1,5-\mathrm{H})$, $8.65(\mathrm{~s}, 1,2-\mathrm{H}), 6.58\left(\mathrm{dd}, 1, J_{1^{\prime}, 2^{\prime}}=6.53 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.42(\mathrm{~d}, \mathrm{l}, J=2.55$ Hz, ex, $\left.3^{\prime}-\mathrm{OH}\right), 5.02\left(\mathrm{~b}, 1, J=4.66 \mathrm{~Hz}\right.$, ex, $\left.5^{\prime}-\mathrm{OH}\right), 4.49\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right)$, $3.94\left(\mathrm{~m}, 1,4^{\prime}-\mathrm{H}\right), 3.66\left(\mathrm{~m}, 1,5^{\prime}-\mathrm{H}\right), 3.59\left(\mathrm{~m}, 1,5^{\prime}-\mathrm{H}\right), 2.82\left(\mathrm{~m}, 1,2^{\prime}-\mathrm{H}\right)$, 2.45 (m, 1, 2^{\prime}-H); FTIR (KBr) 3400, 1633, 1499, 1471, 1393, 1351, 1323, 1217, 1182, 1147, 1083, 1048, 921, 631 cm^{-1}; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 322$ nm (є 13000), 274 (65100), $270(64000), 238(22600)$; low-resolution FAB MS, m / z (relative intensity) $523\left(\mathrm{MH}^{+}, 18\right), 407$ (10), 291 (18), 155 (100); high-resolution FAB MS, $m / z 523.1811\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{10} \mathrm{O}_{6}\right.$ requires 523.1802 amu)
N^{4}-(1-Ethoxy-2-chloroethylidene)- $3^{\prime}, 5^{\prime}$-di- O-acetyl-2'-deoxycytidine (21b). A mixture of $3^{\prime}, 5^{\prime}$-di- O-acetyl-2'-deoxycytidine ($9 \mathrm{~b} ;{ }^{13 \mathrm{~b}} 0.3 \mathrm{~g}, 0.96$ mmol) and chloroketene diethyl acetal ($5 ; 0.6 \mathrm{~g}, 4 \mathrm{mmol}$) in acetonitrile $(8 \mathrm{~mL})$ was stirred under an atmosphere of nitrogen at room temperature for 16 h . During the period, conversion to the chloroimidate 21b was complete as revealed by TLC. The solution was concentrated under reduced pressure, and excess of 5 was removed by codistillation with DMF ($5 \times 5 \mathrm{~mL}$) of the reaction mixture under reduced pressure to give a thick syrupy material. This was purified by silica gel (15 g) column chromatography. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(30 \%, v / v)$ gave 21b ($0.35 \mathrm{~g}, 84 \%$) as a pale yellow viscous oil: $R_{f} 0.25$ (system B); ${ }^{1} \mathrm{H}$ NMR $\delta 1.37(\mathrm{t}, 3, J=7.1 \mathrm{~Hz}), 2.09$ and $2.12\left(2 \mathrm{~s}, 6, \mathrm{COCH}_{3}\right) 2.8-2.9(\mathrm{~m}, 2$, $\left.2^{\prime}-\mathrm{H}\right), 4.2-4.33\left(\mathrm{~m}, 5,4^{\prime}-\mathrm{H}^{\prime}, 5^{\prime}-\mathrm{H}\right.$, and $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.37\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{Cl}\right), 5.23$ $\left(\mathrm{m}, 1,3^{\prime}-\mathrm{H}\right), 6.09(\mathrm{~d}, 1, J=7.16 \mathrm{~Hz}, 5-\mathrm{H}), 6.27\left(\mathrm{dd}, 1, J_{1^{\prime} \cdot 2^{\prime}}=5.71 \mathrm{~Hz}\right.$, $\left.1^{\prime}-\mathrm{H}\right), 7.9(\mathrm{~d}, 1, J=7.16 \mathrm{~Hz}, 4-\mathrm{H})$; high-resolution $\mathrm{FAB} \mathrm{MS}, m / z$ $416.1223\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}_{7}\right.$ requires 416.1225 amu$)$.
N-[5,6-Dihydro-5-ox0-6-(2,3,5-tri-O-acetyl- β-d-ribofuranosyl)imidazo[1,2 -c]pyrimidin-2-yl]cytidine $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O-acetate (22a). A mixture of tri-O-acetylcytidine ($9 \mathrm{a} ; 4.0 \mathrm{~g}, 10.8 \mathrm{mmol}$) and chloroketene diethyl acetal ($5 ; 6.6 \mathrm{~g}, 44 \mathrm{mmol}$) in acetonitrile (100 mL) was stirred at room temperature for 16 h under a nitrogen atmosphere. Acetonitrile was removed by distillation under reduced pressure, and excess of 5 was removed by codistillation under reduced pressure with DMF $(8 \times 10 \mathrm{~mL})$ to give a thick syrup. This was dried under high vacuum for 3 h , more $9 \mathrm{a}(4 \mathrm{~g}, 10.8 \mathrm{mmol})$ was added, together with p-toluenesulfonic acid (0.25 $\mathrm{g}, 0.68 \mathrm{~mm}$). The mixture was dissolved by the addition of benzene (40 mL) and acetonitrile (10 mL) and heated at $80^{\circ} \mathrm{C}$ for 20 h under nitrogen. TLC (system A) of the reaction mixture indicated the formation of a fluorescent product that had a higher R_{f} value than that of 9a. The reaction mixture was concentrated to dryness on a rotary evaporator to give a dark brown residue that was purified by flash chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}(5 \%, v / v)$ as the eluent. The progress of chromatography was followed by TLC analysis (system A) of the fractions (25 mL). Fractions containing 22a were pooled and concentrated under reduced pressure to give 1.06 g of amorphous substance, which was contaminated with other minor impurities. Further elution of the silica gel column gave 3.7 g of unreacted 9 a . Compound 22a was again purified by flash chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ($5 \%, \mathrm{v} / \mathrm{v}$) and recrystallized from ethanol/water to give 0.75 g (17%) as a pale yellow, fluffy substance: mp $138^{\circ} \mathrm{C} ; R_{f} 0.50$ (system A); FTIR (KBr) $1732,1682,1619,1492,1379,1218,1041 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 360 \mathrm{MHz}\right) \delta 10.77(\mathrm{~s}, 1, \mathrm{NH}, \mathrm{ex}), 8.09(\mathrm{~s}, 1), 7.84(\mathrm{~d}, 1, J$ $=7.30 \mathrm{~Hz}), 7.61(\mathrm{~d}, 1, J=7.9 \mathrm{~Hz}), 6.77(\mathrm{~d}, 1, J=7.94 \mathrm{~Hz}), 6.24(\mathrm{~d}$, $\left.2, J_{1^{\prime}, 2^{\prime}}=5.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.19(\mathrm{~d}, 1, J=7.62 \mathrm{~Hz}), 5.96\left(\mathrm{~d}, 1, J_{1^{\prime}, 2^{\prime}}=4.9\right.$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 5.60-5.34\left(\mathrm{~m}, 4,2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 4.40-4.26\left(\mathrm{~m}, 6,4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 2.11$ and $2.06\left(\mathrm{~s}, 18, \mathrm{COCH}_{3}\right)$; UV $\lambda_{\max }(\mathrm{MeOH}) 310 \mathrm{~nm}(\epsilon$ 22500), 256 (17800), 237 (23600); fluorescence $\lambda_{\max }^{\text {ma }} 417 \mathrm{~nm}, \lambda_{\max }^{e^{x}} 325$ nm (absolute ethanol); low-resolution FAB MS, m / z (relative intensity) $761\left(\mathrm{MH}^{+}, 28\right), 503(24), 245$ (100); high-resolution FAB MS, m / z $761.2257\left(\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}_{16}\right.$ requires 761.2266 amu$)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{16} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.00 ; \mathrm{H}, 4.81 ; \mathrm{N}, 10.94$. Found: C, 50.08 ; H, 4.76; N, 10.72

2,9-Bis ($2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyl- β-D-ribofuranosyl) pyrimido $\left[1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $(1,2-c]$ pyrimidine- $1,10(2 H, 9 H)$-dione (23a). To a cold $\left(-10^{\circ} \mathrm{C}\right)$ solution of $22 \mathrm{a}(0.3 \mathrm{~g}, 0.4 \mathrm{mmol})$ in a solvent mixture of $1,1,1,3,3,3$-hexafluoro-2-methyl-2-propanol (11 mL) and nitromethane $(24 \mathrm{~mL})$ was added dropwise a solution of 2-nitroiodobenzene diacetate

$R=O A C(14 c)$
(b)

$$
R=O A C(23 a)
$$

Figure 6. Graphic ${ }^{13} \mathrm{C}$ NMR assignments for (a) 14 c and (b) $\mathbf{2 3 a}$. ${ }^{1} \mathrm{H}$ NMR assignments are in parentheses.
$(0.25 \mathrm{~g}, 0.68 \mathrm{mmol})$ in the same solvent mixture (7 mL). The system was stirred at $-10^{\circ} \mathrm{C}$ under nitrogen for 1 h , followed by stirring at 0 ${ }^{\circ} \mathrm{C}$ for 30 min . TLC analysis (system A) of the reaction mixture indicated almost complete conversion to a fluorescent product with a higher $R_{f}(0.52)$ value than the starting material. The solvents were removed by distillation under reduced pressure, and the residue was purified by column chromatography on silica gel (10 g , Brinkmann) using a $\mathrm{CHCl}_{3} / \mathrm{MeOH}(0-2 \%, \mathrm{v} / \mathrm{v})$ gradient to give 0.16 g of 23 a as amorphous material. This was further purified by silica gel (5 g) chromatography using a $\mathrm{CHCl}_{3} / \mathrm{MeOH}(0-2 \%, v / v)$ gradient to afford $0.102 \mathrm{~g}(34 \%)$ of 23a as a pale yellow solid. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ provided analytically pure 23a as colorless needles: $\mathrm{mp} 208-209{ }^{\circ} \mathrm{C}$; $R_{f} 0.52$ (system A); FTIR (KBr) $1739,1626,1358,1218,1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, 1, J=8.02 \mathrm{~Hz}, 3-\mathrm{H}), 6.79(\mathrm{~d}, \mathrm{I}, J=8.02 \mathrm{~Hz}, 4-\mathrm{H})$, $6.59\left(\mathrm{~d}, 1, J_{1^{\prime} 2^{\prime}}=5.43 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.4\left(\mathrm{~m}, 2,2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 4.43(\mathrm{~m}$, $3,4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}^{\prime} \mathrm{s}\right), 2.20,2.13,2.08\left(\mathrm{~s}, 9, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75.2 $\mathrm{MHz}) \delta 169.88,169.32,153.52$ (C-5a), 147.31 (C-6a), 144.42 (C-1), 126.68 (C-3), 116.51 (C-11a), 100.24 (C-4), 86.93 (C-1'), 79.77 (C-4'), 72.87 (C-2'), 70.13 (C-3'), 62.95 (C-5'), 20.59, 20.26; UV $\lambda_{\max }(\mathrm{MeOH})$ $350 \mathrm{~nm}(\epsilon 14650), 333$ (19700), 322 (16000), 253 (24000), 216 (24 300); low-resolution FAB MS, m / z (relative intensity) 759 (MH^{+}, 32), 501 (18), 267 (33), 155 (100); high-resolution FAB MS, m / z $759.2103 \mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{16}$ requires 759.2100 amu). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{16} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.48 ; \mathrm{H}, 4.62 ; \mathrm{N}, 10.82$. Found: C, $49.48 ; \mathrm{H}$, 4.19; N, 10.66

2,9-Di(β-D-ribofuranosyl) pyrimido [$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]-$ imidazo 1,2 -c]pyrimidine-1,10(2H,9H)-dione (17). A suspension of 23a ($30 \mathrm{mg}, 0.04 \mathrm{mmol}$) in methanolic tert-butylamine ($0.15 \mathrm{M}, 5 \mathrm{~mL}$) was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then at room temperature for 2 h . The reaction mixture was cooled and the gelatinous precipitate was filtered, washed with cold methanol, and dried in vacuo to give 16 mg of colorless product, which was recrystallized from aqueous ethanol to give 17 (12 $\mathrm{mg}, 60 \%$) as a powder: $\mathrm{mp} 219-222{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ $7.86(\mathrm{~d}, 1, J=7.92 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1, J=7.92 \mathrm{~Hz}), 6.12\left(\mathrm{~d}, 1, J_{1^{\prime} \cdot 2^{\prime}}=4.87\right.$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 5.51(1, \mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{OH}, \mathrm{ex}), 5.22(\mathrm{~m}, 2, \mathrm{OH}$, ex $), 4.18$ (m, 1, 2'-H), $4.06\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), 3.95\left(\mathrm{~m}, 1,4^{\prime}-\mathrm{H}\right), 3.65\left(\mathrm{~m}, 2,5^{\prime}-\mathrm{H}\right)$; FTIR (KBr) $3400,3200,1696,1604,1393,1091 \mathrm{~cm}^{-1}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right)$ $350 \mathrm{~nm}(\epsilon 12900)$ (sh), 333 (16600), 256 (20900), $220 \mathrm{~nm}(19100)$; low-resolution FAB MS, m / z (relative intensity) $507\left(\mathrm{MH}^{+}, 24\right), 375$ (11), 243 (21); high-resolution FAB MS, $m / z 507.1490\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}_{10}\right.$ requires 507.1476 amu).
2^{\prime}-Deoxy- N -[6-($\mathbf{3}^{\prime}, 5^{\prime}$-di- O-acetyl- $\mathbf{2}^{\prime}$-deoxy- β-d-ribofuranosyl)-5,6-di-hydro-5-oximidazo 1,2 -c pyrimidin-2-yl]cytidine 3', 5^{\prime}-Di- O-acetate (22b). A solution of $3^{\prime}, 5^{\prime}$-di-O-acetyl-2'-deoxycytidine ($9 \mathrm{~m},{ }^{13 \mathrm{~b}} 5 \mathrm{~g}, 16 \mathrm{mmol}$) and chloroketene diethyl acetal ($5 ; 10 \mathrm{~g}, 67 \mathrm{mmol}$) in acetonitrile (125 mL) was stirred at room temperature for 21 h under an atmosphere of nitrogen. Acetonitrile was removed by distillation under reduced pressure, and excess of 5 was removed by repeated codistillation with DMF ($6 \times$ 15 mL) under reduced pressure. The residue was dried under high vacuum for 5 h , dissolved in a mixture of benzene (40 mL) and aceto-
nitrile (20 mL), p-Toluenesulfonic acid ($0.3 \mathrm{~g}, 0.16 \mathrm{mmol}$) was added, and the mixture was heated at $60^{\circ} \mathrm{C}$ for 40 h under nitrogen. TLC (system A) of the reaction mixture indicated the formation of a fluorescent product ($R_{f} 0.43$, system A) along with other products. Most of the starting material remained unreacted. The reaction mixture was concentrated under reduced pressure to a thick syrup, charged onto a silica gel column (300 g), and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(6 \%)$. The progress of separation was followed by TLC (system A) of the various fractions (25 mL). Appropriate fractions (as revealed by fluorescence) were combined and concentrated to dryness under reduced pressure to afford 1 g of pale yellow 22b. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane afforded $0.85 \mathrm{~g}(17 \%)$ of $\mathbf{2 2 b}$ as analytically pure material: $\mathrm{mp} 220^{\circ} \mathrm{C}$; $R_{f} 0.43$ (system A); IR (KBr) 1750, 1700, 1625, 1565, 1407, 1370, 1240, $1225,1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ((CD $\left.)_{2} \mathrm{SO}\right) \delta 10.65(\mathrm{~s}, 1, \mathrm{NH}, \mathrm{ex}), 8.10(\mathrm{~s}$, 1), $7.80(\mathrm{~d}, 1, J=7.46 \mathrm{~Hz}), 7.55(\mathrm{~d}, 1, J=7.95 \mathrm{~Hz}), 6.74(\mathrm{~d}, 1, J=$ $7.90 \mathrm{~Hz}), 6.45\left(\mathrm{dd}, 1, J_{1^{\prime}, 2 \mathrm{a}}=7.32 \mathrm{~Hz}, J_{1^{\prime}, 2 \mathrm{~b}}=6.72 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 6.22(\mathrm{dd}$, $\left.1, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=7.7 \mathrm{~Hz}, J_{1^{\prime}, 2_{\mathrm{b}}}=6.15 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 6.19(\mathrm{~d}, 1, J=7.01 \mathrm{~Hz}), 5.23$ (m, 2, $\left.3^{\prime}-\mathrm{H}\right), 4.28-4.22\left(\mathrm{~m}, 6,4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 2.47-2.42\left(\mathrm{~m}, 4,2^{\prime} \mathrm{a}-\mathrm{H}\right.$ and $\left.2^{\prime} \mathrm{b}-\mathrm{H}\right), 2.4,2.37,2.35,2.32\left(\mathrm{~s}, 12, \mathrm{COCH}_{3}\right) ;$ UV $\lambda_{\max }(\mathrm{MeOH}) 310$ $\mathrm{nm}(\epsilon 22600), 257(18900), 238(24400)$; fluorescence $\lambda_{\max }^{\text {em }} 424 \mathrm{~nm}, \lambda_{\max }^{\text {ex }}$ $325 \mathrm{~nm}(\mathrm{EtOH})$; low-resolution FAB MS, m / z (relative intensity) 645 ($\mathrm{MH}^{+}, 70$), 445 (40), 245 (100); high-resolution FAB MS, $m / z 645.2139$ $\left(\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{12}\right.$ requires 645.2156 amu$)$. Anai. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{12} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.53 ; \mathrm{H}, 5.06 ; \mathrm{N}, 12.88$. Found: C, 51.39 ; H, 5.09; N, 12.65 .

2,9-Bis ($\mathbf{3}^{\prime}, 5^{\prime}$-di- O-acetyl-2'-deoxy- β-D-ribofuranosyl)pyrimido$\left[1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[1,2-c]$ pyrimidine- $1,10(2 H, 9 H)$ dione (23b). To a cold $\left(-10^{\circ} \mathrm{C}\right)$ solution of $22 \mathrm{a}(0.13 \mathrm{~g}, 0.2 \mathrm{mmol})$ in a solvent mixture of $1,1,1,3,3,3$-hexafluoro-2-methyl-2-propanol (5 mL) and nitromethane (11 mL) was added dropwise a solution of 2-nitroiodobenzene diacetate ($0.11 \mathrm{~g}, 0.3 \mathrm{mmol}$) in 4 mL of the same solvent mixture. The mixture was stirred under nitrogen at $-10^{\circ} \mathrm{C}$. After 1.5 h the TLC (system A) of the reaction mixture indicated almost complete conversion to a slightly less polar, distinctly blue fluorescent compound. The solution was allowed to warm to ambient temperature for 15 min , and the solvents were removed (bath temperature $40^{\circ} \mathrm{C}$) under reduced pressure. The residue was dried in vacuo and purified by column chromatography on silica gel (5 g , Brinkmann $0.05-0.2 \mathrm{~mm}$) using a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(0-2 \%, v / v)$ gradient. The progress of separation was monitored by TLC (system A) of $5-\mathrm{mL}$ fractions. Appropriate fractions containing the blue fluorescent product were combined, concentrated under reduced pressure, and dried under high vacuum for 3 h to yield 72 mg (56%) of pale yellow 23b: $R_{f} 0.47$; FTIR (KBr) $1740,1630,1365$, $1220,1120 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, 1, J=8.05 \mathrm{~Hz}, 3-\mathrm{H}), 6.76$ $(\mathrm{d}, 1, J=8.05 \mathrm{~Hz}, 4-\mathrm{H}), 6.60\left(\mathrm{dd}, 1, J_{1^{\prime}, 2^{\prime}}=5.34 \mathrm{~Hz}\right), 5.26\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right)$, $4.37\left(\mathrm{~m}, 3,4^{\prime}-\mathrm{H}\right), 2.73$ and $2.21\left(\mathrm{~m}, 2,2^{\prime} \mathrm{a}-\mathrm{H}\right.$ and $\left.2^{\prime} \mathrm{b}-\mathrm{H}\right), 2.14$ and 2.13 $\left(\mathrm{s}, 6, \mathrm{COCH}_{3}\right),{ }^{13} \mathrm{C}$ NMR $(75.2 \mathrm{MHz}) \delta 170.05,153.57,147.56,144.15$, 126.36, 116.02, 99.54, 86.51, 82.43, 74.15, 63.61, 38.17, 20.67; UV $\lambda_{\text {max }}$ (MeOH) $350 \mathrm{~nm}(\epsilon 10000), 332$ (11400), 256 (22600), 218 (19800); fluorescence $\lambda_{\max }^{e m} 392 \mathrm{~nm}, \lambda_{\max }^{e x} 325 \mathrm{~nm}, \Phi=0.15$ (ethanol) (relative to coumarin in ethanol, $\Phi=0.56$ at $\lambda_{\max }^{e x}=325 \mathrm{~nm}$); low-resolution FAB MS, m / z (relative intensity) 643 (65), 443 (25), 243 (88), 119 (100); high-resolution FAB MS, $m / z 643.2008\left(\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{12}\right.$ requires 643.2001 amu).

2,9-Bis(2^{\prime}-deoxy- β-D-ribofuranosyl)pyrimido[$\left.1^{\prime \prime}, 6^{\prime \prime}: 1^{\prime}, 2^{\prime}\right]$ imidazo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ imidazo $[1,2-c$ ppyimidine-1,10($2 H, 9 H$)-dione (18). The deacetylation of 23b was best accomplished with the preservation of syn geometry ${ }^{55}$ by the use of 0.2 M tert-butylamine in methanol at -5 to -10 ${ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h}: \mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.81\left(\mathrm{~d},{ }^{1} \quad J=7.96\right.$ $\mathrm{Hz}), 6.74(\mathrm{~d}, 1, J=7.96 \mathrm{~Hz}), 6.42\left(\mathrm{dd}, 1, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=6.57 \mathrm{~Hz}, J_{1^{\prime}, 2 \mathrm{~b}}=6.4\right.$ $\left.\mathrm{Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.32\left(\mathrm{~d}, 1, J=4.05 \mathrm{~Hz}\right.$, ex, $\left.3^{\prime}-\mathrm{OH}\right), 5.12(\mathrm{t}, 1, J=4.98 \mathrm{~Hz}$, ex, $\left.5^{\prime}-\mathrm{OH}\right), 4.30\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), 3.89\left(\mathrm{~m}, 1,4^{\prime}-\mathrm{H}\right), 3.64\left(\mathrm{~m}, 2,5^{\prime}-\mathrm{H}\right), 2.24$ (m, 2, $\left.2^{\prime}-\mathrm{H}\right)$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 350 \mathrm{~nm}(\epsilon 12700), 332$ (16900), 320 (13500), 255 (21500), 220 nm (21900); low-resolution FAB MS, m / z $475,359,243$; high-resolution FAB MS, $m / z 475.1577\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}_{8}\right.$ requires 475.1577 amu).

Acknowledgment. This work was supported by research grant CHE-84-16336 from the National Science Foundation and by an unrestricted grant from Eli Lilly and Co. We are pleased to acknowledge the assistance of Dr. Balkrishen Bhat, particularly in the O-deacetylation sequences. Dr. Kurt L. Loening, Nomenclature Director of the Chemical Abstracts Service of the American Chemical Society, gave us valuable guidance for the naming of the compounds described herein. We thank Ms. Patricia Silver for her assistance in preparing this manuscript.
(55) Bhat, B.; Leonard, N. J. J. Org. Chem. 1989, 54, 2030.

[^0]: (14) Hopkinson, A. C.; Csizmadia, I. G. Can. J. Chem. 1973, 51, 1432.
 (15) Perrin, C. L.; Gipe, R. K. J. Am. Chem. Soc. 1986, 108, 1088. Perrin, C. L.; Gipe, R. K. Science 1987, 238, 1393.
 (16) Perrin, C. L.; Arrhenius, G. M. L. J. Am. Chem. Soc. 1982, 104, 6693.

[^1]: ${ }^{\dagger}$ Dedicated to the memory of Professor Roger Adams in the centennial year of his birth.
 ${ }^{1}$ Fogarty Scholar-in-Residence, 1989-1990, National Institutes of Health, U.S. Public Health Service, Bethesda, MD 20892.

[^2]: (3) Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1983; pp 116-158.
 (4) Leonard, N. J. CRC Crit. Rev. Biochem. 1984, 15, 125, and references therein. (Note: Interchange pages 157 and 158 in the printed article.)
 (5) Cruickshank. K. A.; Sumoto, K.; Leonard, N. J. Tetrahedron Lett. 1985, 26, 2723.
 (6) Groziak, M. P.; Wilson, S. R.; Clauson, G. L.; Leonard, N. J. J. Am. Chem. Soc. 1986, 108, 8002, and supplementary material.

[^3]: (7) (a) McElvain, S. M.; Beyerstedt, F. J. Am. Chem. Soc. 1937, 59, 2266
 (b) Magnani, A.; McElvain, S. M. J. Am. Chem. Soc. 1938, 60, 2210.
 (8) Brederick, H. Chem. Ber. 1947, 80, 401.

[^4]: (9) Leonard, N. J.; Cruickshank, K. A. J. Org. Chem. 1985, 50, 2480 (10) Leonard, N. J.; Cruickshank, K. A. In The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis; Singer, B., Bartsch, H., Eds.; International Agency for Research on Cancer: Lyon, France, 1986; pp 33-36.
 (11) Leonard, N. J.; Cruickshank, K. A.; Groziak, M. P.; Clauson, G. L.; Devadas, B. Ann. N.Y. Acad. Sci. 1986, 471, 255.
 (12) (a) Dutta, S. P.; Hong, C. I.; Murphy, G. P.; Mittelman, A.; Chheda, G. B. Biochemistry 1975, 14, 3144. (b) Kierzek, R.; Ito, H.; Bhatt, R.; Itakura, K. Tetrahedron Lett. 1981, 22, 3761.

[^5]: (13) (a) Anderson, W.; Hayes, D. H.; Michelson, A. M.; Todd, A. R. J. Chem. Soc. 1954, 1882. (b) Ishido, Y. N.; Nakazaki, N.; Sakairi, N. J. Chem. Soc., Perkin Trans. I 1979, 2088.
 (14) (a) Varvoglis, A. Synthesis 1984, 709. (b) Awang, D. V. C.; Vincent, A. Can. J. Chem. 1980, 58, 1589 . (c) Chou, F.-T. Ph.D. Thesis, University of Nebraska-Lincoln, 1975. (d) Baumgarten, H. E. Symposium in Honor of Professor Norman H. Cromwell, The University of Nebraska-Lincoln, Department of Chemistry, May 18, 1984. (e) Moriarty, M.; Prakash, O. Acc. Chem. Res. 1986, 19, 244.
 (15) Cruickshank, K. A.; Leonard, N. J., unpublished results.
 (16) Gustafsson, J. A.; Rondahl, L.; Bergman, J. Biochemistry 1979, 18, 865.

[^6]: (17) Bell, F. A.; Ledwith, A.; Sherrington, D. C. J. Chem. Soc. C 1969, 2719.
 (18) Dennis. J. B.; David, D. W.: Nathan, L. B. J. Am. Chem. Soc. 1981, 103, 718.
 (19) Pereira. D. E.; Clauson, G. L.: Leonard, N. J. Tetrahedron 1987, 43. 4931.
 (20) Benn, R.; Gunther, H. Angew. Chem., Int. Ed. Engl. 1983, 22. 350. (21) Bleich. H.: Gould. S.: Pitner. P.; Wilde. J. J. Magn. Reson. 1984, 56, 515.
 (22) Sato, Y.: Geckle. M.; Gould. S. J. Tetrahedron Lett. 1985, 26, 4019.

[^7]: (24) Rich, A. Nature (London) 1958, 181, 521.
 (25) Michelson, A. M.; Monny, C.; Laursen, R. A.; Leonard, N. J. Biochim. Biophys. Acta 1966, 119, 258.
 (26) Michelson, A. M.; Massouliê, J.; Guschlbauer, W. Prog. Nucleic Acid Res. Mol. Biol. 1967, 6,83 (see especially p 116).
 (27) Reference 3, pp 120, 129, 157, 246.
 (28) Doty, P.; Boedtker, H.; Fresco, J. R.; Haselkorn, R.; Litt, M. Proc. Natl. Acad. Sci. U.S.A. 1959, 45, 482.
 (29) Sigler, P. B.; Davies, D. R.; Miles, H. T. J. Mol. Biol. 1962, 5, 709.
 (30) Arnott, S.; Selsing, E. J. Mol. Biol. 1974, 88, 509.
 (31) Arnott, S.; Bond, P. J.; Selsing, E.; Smith, P. J. C. Nucleic Acids Res. 1976, 3, 2459.
 (32) As in the complex of 9-ethyl-8-bromoadenine and 9-ethyl-8-bromohypoxanthine: Sakore, T. D.; Sobell, H. M. J. Mol. Biol. 1969, 43, 77.
 (33) Martin, F. H.; Castro, M. M.; Aboul-ela, F.; Tinoco, I., Jr. Nucleic Acids Res. 1985, 13, 8927.
 (34) Privê, G. G.; Heinemann, U.; Chandrasegaran, S.; Kan, L.-S.; Kapka, M. L.; Dickerson, R. L. Science 1987, 238, 498.
 (35) Kan, L.-S.; Chandrasegaran, S.; Pulford, S. M.; Miller, P. S. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 4263.
 (36) Patel, D. J.; Koslowski, S. A.; Ikuta, S.; Itakura, K. Biochemistry 1984, 23, 3207.
 (37) Jack, A.; Ladner, J. E.; Klug, A. J. Mol. Biol. 1976, $108,619$.
 (38) Rich, A.; RajBhandary, U. L. Annu. Rev. Biochem. 1976, 45, 805.

[^8]: (49) We are grateful to Dr. Tom G. Holt for performing the antiviral, antibacterial, and cytotoxicity assays.
 (50) Herrmann, E. C., Jr. Prog. Med. Virol. 1961, 3, 158.
 (51) Schroeder, A. C.;'Hughes, R. G., Jr., Bloch, A. J. Med. Chem. 1981, 24, 1078.
 (52) We are grateful to Dr. Paul A. Kiefer for performing the biochemical induction assays.
 (53) Elespuru, R. K.; White, R. J. Cancer Res. 1983, 43, 2819.
 (54) Caution! Chloroketene diethyl acetal is a mutagen and should be handled with caution in a well-ventilated hood, with suitable trapping.

